期刊文献+

基于近似高斯核显式描述的大规模SVM求解 被引量:4

Approximate Gaussian Kernel for Large-Scale SVM
下载PDF
导出
摘要 大规模数据集上非线性支持向量机(support vector machine,SVM)的求解代价过高,然而对于线性SVM却存在高效求解算法.为了应用线性SVM高效求解算法求解非线性SVM,并保证非线性SVM的精确性,提出一种基于近似高斯核显式描述的大规模SVM求解方法.首先,定义近似高斯核并建立其与高斯核的关系,推导近似高斯核与高斯核的偏差上界.然后给出近似高斯核对应的再生核希尔伯特空间(reproducing kernel Hilbert space,RKHS)的显式描述,由此可精确刻画SVM解的结构,增强SVM方法的可解释性.最后显式地构造近似高斯核对应的特征映射,并将其作为线性SVM的输入,从而实现了用线性SVM算法高效求解大规模非线性SVM.实验结果表明,所提出的方法能提高非线性SVM的求解效率,并得到与标准非线性SVM相近的精确性. Training support vector machine (SVM) with nonlinear kernel functions on large-scale data is usually very time consuming. In contrast, there exist faster solvers to train the linear SVM. To utilize the computational efficiency of linear SVM without sacrificing the accuracy of nonlinear ones, in this paper, we present a method for solving large-scale nonlinear SVM based on an explicit description of an approximate Gaussian kernel. We first give the definition of the approximate Gaussian kernel, and establish the connection between approximate Gaussian kernel and Gaussian kernel, and also derive the error bound between these two kernel functions. Then, we present an explicit description of the reproducing kernel Hilbert space (RKHS) induced by the approximate Gaussian kernel. Thus, we can exactly depict the structure of the solutions of SVM, which can enhance the interpretability of the model and make us more deeply understand this method. Finally, we explicitly construct the feature mapping induced by the approximate Gaussian kernel, and use the mapped data as input of linear SVM. In this way, we can utilize existing efficient linear SVM to solve non-linear SVM on large-scale data. Experimental results show that the proposed method is efficient, and can achieve comparable classification accuracy to a normal nonlinear SVM.
出处 《计算机研究与发展》 EI CSCD 北大核心 2014年第10期2171-2177,共7页 Journal of Computer Research and Development
基金 国家自然科学基金项目(61170019) 天津市自然科学基金项目(11JCYBJC00700)
关键词 支持向量机 线性支持向量机 核方法 近似高斯核 再生核希尔伯特空间 support vector machine linear support vector machine kernel methods approximate Gaussian kernel reproducing kernel Hilbert space
  • 相关文献

参考文献22

  • 1Vapnik V. The Nature of Statistical Learning Theory [M]. Berlin: Springer, 2000.
  • 2Cristianini N, Shawe- Taylor J. An Introduction to Support Vector Machines and Other Kernel-Based Learning Methods [M]. Cambridge, UK: Cambridge University Press, 2000.
  • 3Zhang Tong. Solving large scale linear prediction problems using stochastic gradient descent algorithms [C] //Proc of the 21st Int Conf on Machine Learning. San Francisco, CA: Morgan Kaufmann, 2004: 16-123.
  • 4Shalev-Shwartz S, Singe y, Srebro N, et a1. Pegasos , primal estimated sub-gradient solver for SVM [J]. Mathematical Programming, 2011, 127(1): 3-30.
  • 5Joachims T. Training linear SVMs in linear time [C] //Proc of the 12th ACM Conf on Knowledge Discovery and Data Mining. New York: ACM: 2006: 217-226.
  • 6Smola A, Vishwanathan S, Le Q. Bundle methods for machine learning [C] I I Advances in Neural Information Processing Systems 20. Cambridge, MA: MIT Press, 2008: 1377-1384.
  • 7Lin C 1, Weng R C, Keerthi S. Trust region newton method for large-scale logistic regression [J]. Journal of Machine Learning Research, 2008, 9: 627-650.
  • 8Chang K W, Hsieh C J, Lin C J. Coordinate descent method for large-scale L2-10ss linear Support Vector Machines [J]. Journal of Machine Learning Research, 2008, 9: 1369-1398.
  • 9Hsieh C J, Chang K W, Lin C J. A dual coordinate descent method for Large-scale linearSVM [C] //Proc of the 25th Int Conf on Machine Learning. San Francisco, CA: Morgan Kaufmann, 2008: 408-415.
  • 10Yu H F, Huang F L, Lin C J. Dual coordinate descent methods for logistic regression and maximum entropy models [J]. Machine Learning, 2011, 85(1/2): 41-75.

二级参考文献40

  • 1Vapnik V. The Nature of Statistical Learning Theory [M]. Berlin: Springer, 2000.
  • 2Guyon I, Saffari A, Dror G. Model selection: Beyond the Bayesian/frequent divide[J]. Journal of Machine Learning Research, 2010, 11: 61-87.
  • 3Duan K, Keerthi S, Poo A. Evaluation of simple performance measures for tuning SVM hyperparameters [J]. Neurocomputing, 2003, 51: 41-59.
  • 4Huang C, Wang C. A GA-hased feature selection and parameters optimization for support vector machines [J]. Expert Systems with Applications, 2006, 31(2):231-240.
  • 5Friedrichs F, Igel C. Evolutionary tuning of multiple SVM parameters [J]. Neuroeomputing, 2005, 64:107-117.
  • 6Vapnik V, Chapelle O. Bounds on error expectation for support vector machines [J]. Neural Computation, 2000, 12 (9) : 2013-2036.
  • 7Chapelle O, Vapnik V, Bousquet O. Choosing multiple parameters for support vector machines [J]. Machine Learning, 2002, 46(1): 131-159.
  • 8Xu Z, Dai M, Meng D. Fast and effcient strategies for model selection of Gaussian support vector machine [J]. IEEE Trans on Systems, Man, and Cybernetics, Part B: Cybernetics, 2009, 39(5) : 1292-1307.
  • 9Jia Lei, Liao Shizhong, Ding Lizhong. Learning with uncertain kernel matrix set[J]. Journal of Computer Seienee and Technology, 2010, 25(4): 709-727.
  • 10Papadimitriou C, Raghavan P, Tamaki H. Latent semantic indexing: A probabilistic analysis [J]. Journal of Computer and System Sciences, 2000, 61(2): 217-235.

共引文献2279

同被引文献31

  • 1Vapnik V N. Statistical I.earning Theory [M]. New York: John Wiley I Sons, 1998.
  • 2Sch61kopf B, Smola A J. Learning with Kernels: Support Vector Machines, Regularization, Optimization,and Beyond [M]. Cambridge, MA: MIT Press, 2002.
  • 3Chapelle O, Vapnik V. Model selection for support vector machines [C] //Advances in Neural In{ormation Processing Systems 12. Cambridge, MA: MIT Press, 2000:230-236.
  • 4Guyon I, Saffari A, Dror G, et al. Model selection: Beyond the Bayesian/frequentist divide [J]. Journal o{ Machine Learning Research, 2010, 11:61-87.
  • 5Duan K, Keerthi S S, Poo A N. Evaluation of simple performance measures for tuning SVM hyperparameters [J]. Neurocomputing, 2003, 51:41-59.
  • 6Chapelle O, Vapnik V N, Bousquet O, et ai. Choosing multiple parameters for support vector machines [J]. Machine Learning, 2002, 46(1/2/3): 131-159.
  • 7Vapnik V N, Chapelle O. Bounds on error expectation for support vector machines [J]. Neural Computation, 2000, 12 (9) : 2013-2036.
  • 8Platt J C. Fast Training of support vector machines using sequential minimal optimization [C] //Advances in Kernel Methods: Support Vector Learning. Cambridge, MA: MIT Press, 1999:185-208.
  • 9Zhang T. Solving large scale linear prediction problems using stochastic gradient descent algorithms [C] //Proc of the 21st Int Conf on Machine I.earning. New York: ACM, 2004: 919-926.
  • 10Joachims T. Training linear SVMs in linear time [C] //Proc of the 12th ACM SIGKDD Int Conf on Knowledge Discovery and Data Mining. New York: ACM, 2006:217-226.

引证文献4

二级引证文献18

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部