期刊文献+

超小金纳米团簇作为CT对比剂的研究 被引量:1

Study on ultra-small gold nanoclusters as X-rays computed tomography contrast agent
下载PDF
导出
摘要 采用X-射线断层扫描(Computed tomography,CT)技术测量肿瘤部位、肝、脾、肾、膀胱的CT值和不同时间点的二维、三维影像来评价谷胱甘肽(Glutathione,GSH)保护的超小金纳米团簇作为对比剂的可能性,并验证它的高效肿瘤摄取和清除作用。CT结果表明,肿瘤部位的加强对比作用随时间的增加而增加,加强的影像直至6 h仍未减弱,因此,证明了肿瘤细胞的高效摄取,这有利于将其应用于肿瘤靶影像中。膀胱起始的高CT值表明,GSH保护的金纳米团簇能渗透肾组织,通过膀胱排泄。肾的加强对比表明其有可能应用于探测肾的病变和损伤。 To assess the feasibility of ultra-small GSH-protected Au nanoclusters (NCs) employed as X-ray computed tomography (CT) contrast agent and study the effects of efficient uptake and clearance, CT values and time-dependent two- and three-dimensional images were recorded. The CT values of tumor region showed that the enhanced comparison gradually increased with the time. And the high enhanced comparison can also be reflected by distinct images until 6 h later. Therefore, high uptake of cancerous cell was proved by the CT values and two/three-images, which contributes to the application of Au NCs in tumor target imaging. High CT values of bladder were detected from the beginning, showing that Au NCs can permeate kidney tissue and be cleared by bladder. And the enhancement comparison of kidney revealed the possible application of exploration damage and lesion as probe.
出处 《辐射研究与辐射工艺学报》 CAS CSCD 2014年第5期18-22,共5页 Journal of Radiation Research and Radiation Processing
基金 北京协和医学院协和新星基金(人1256) 北京协和医学院青年基金(院1343) 中国医学科学院放射医学研究所基金项目(ST1440)资助
关键词 谷胱甘肽 金纳米团簇 X-射线CT影像 对比剂 Glutathione, Au nanoclusters, X-ray CT imaging, Contrast agent
  • 相关文献

参考文献12

  • 1Cai Q Y, Kim S H, Choi K S, et al. Colloidal gold nanoparticles as a blood-pool contrast agent for X-ray computed tomography in mice [J]. Investigative Radiology, 2007, 42(12): 797-806.
  • 2Kim D, Park S, Lee J H, et al. Antibiofouling polymer-coated gold nanoparticles as a contrast agent for in vivo X-ray computed tomography imaging [J]. Journal of the American Chemical Society, 2007, 129(24): 7661-7665.
  • 3Rabin O, Perez J M, Grimm J, et al. An X-ray computed tomography imaging agent based on long-circulating bismuth sulphide nanoparticles [J]. Nature Materials, 2006, 5(2): 118-122.
  • 4Alkilany A M, Murphy C J. Toxicity and cellular uptake of gold nanoparticles: what we have learned so far [J]? Joumal of Nanopartical Research, 2010, 12(7): 2313-2333.
  • 5Zhang X D, Wu D, Shen X, et al. In vivo renal clearance, biodistribution, toxicity of gold nanoclusters [J]. Biomaterials, 2012, 33(18): 4628-4638.
  • 6Sousa A A, Morgan J T, Brown P H, et al. Synthesis, characterization, and direct intracellular imaging of ultrasmall and uniform glutathione-coated gold nanoparticles [J]. Small, 2012, 8(14): 2277-2286.
  • 7Aydogan B, Li J, Rajh T, et al. AuNP-DG: Deoxyglucose-labeled gold nanoparticles as X-ray computed tomography contrast agents for cancer imaging [J]. Molecular Imaging and Biology, 2010, 12(5): 463 -467.
  • 8Choi H S, Liu W, Misra P, et al. Renal clearance of quantum dots [J]. Nature Biotechnology, 2007, 25: 1165-1170.
  • 9Peng C, Zheng L, Chen Q, et al. PEGylated dendrimer-entrapped gold nanoparticles for in vivo blood pool and tumor imaging by computed tomography [J]. Biomaterials, 2012, 33(4): 1107-1119.
  • 10Zhang X D, Chen J, Min Y, et al. Metabolizable Bi2Se3 nanoplates: biodistribution, toxicity, and uses for cancer radiation therapy and imaging [J]. Advanced Functional Materials, 2014, 24(12): 1718-1729.

同被引文献7

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部