摘要
提出一种基于条件随机场的车牌字符分割算法,能够对光照不均、相机拍摄角度造成的低图像质量的车牌图像,特别是日益增多的车牌边框与字符相连接车牌图像进行有效的字符分割。算法首先进行车牌图像校正,然后利用标注车牌数据进行模型学习,对车牌图像像素列进行分类识别,最后组合成车牌字符分割结果。理论分析与实验结果验证了算法的有效性。
This paper proposes a conditional random fields-based character segmentation method, it can make effective characters segmentation for the license plate image with low image quality caused by uneven light and shooting angle of camera, etc., in particular, for those increasingly growing license plates images whose plate characters are connected with plate borders. First, the correction of license plate image is conducted, and then the labelled plate data are used to train the model for the classification and identification of the pixel columns in license plate image, finally the segmentation results of the license plate characters are combined. Theoretical analysis and experimental results all verify the effectiveness of the algorithm.
出处
《计算机应用与软件》
CSCD
北大核心
2014年第10期157-160,共4页
Computer Applications and Software
基金
国家高技术研究发展计划项目(2011AA010604)
上海市科委科技创新行动计划项目(12511501602)
上海市宝山区科委产学研合作项目(CXY-2011-11)
关键词
车牌识别
字符分割
条件随机场
License plate recognition
Character segmentation
Conditional random fields