期刊文献+

基于均匀设计优化预测模型参数的混沌时间序列预测 被引量:1

CHAOTIC TIME SERIES PREDICTION BASED ON OPTIMISING PREDICTION PARAMETERS MODEL WITH UNIFORM DESIGN
下载PDF
导出
摘要 为解决混沌时间序列预测中的延迟时间、嵌入维与模型参数等优化问题,提出一种基于均匀设计优化预测模型参数的混沌时间序列预测模型(UD-LSSVM)。首先采用均匀设计产生多个参数组合,并采用最小二乘支持向量机得到每组参数的均方根误差(RMSE);然后最小二乘支持向量机对参数进行全组合寻优建立最优混沌时间预测模型;最后进行混沌时间序列仿真测试。仿真结果表明,相对于对比模型,UD-LSSVM不仅可以快速、准确找到延迟时间、嵌入维与模型参数的最优组合,而且提高了混沌时间序列预测的预测精度。 In order to solve the optimisation problems of delay time, dimension embedding and model parameters in chaotic time series prediction, we propose a prediction model of chaotic time series which is based on optimising prediction model parameters with uniform design. First we use uniform design to produce multiple parameter combinations, and use least square service vector machine (LSSVM) to obtain the root mean square error (RMSE) of every group of parameters. Secondly, we use LSSVM to conduct full combination optimisation on parameters to build the optimal chaotic time prediction model. Finally, the simulation experiments are carried out on chaotic time series. Simulation result illustrates that in comparison with contrasting models, the proposed model can quickly and accurately find the optimal combination of delay time, dimension embedding and model parameters, and the prediction accurate of chaotic time series is improved as well.
出处 《计算机应用与软件》 CSCD 北大核心 2014年第10期176-179,共4页 Computer Applications and Software
基金 湖北省高校省级教学研究项目(2012458) 2014年校级科研项目(201405)
关键词 均匀设计 支持向量机 参数优化 混沌时间序列 Uniform design Support vector machines Parameters optimisation Chaotic time series
  • 相关文献

参考文献12

  • 1Hamid Yazdani, Ali Fallah,Fatemeh Khamseh Nezhad. RBF Network-Based Chaotic Time Series Prediction and Its Application in IRANstock market [J]. Life Science Journal, 2013,10(7) :326 -230.
  • 2Chen Diyi, Han Wenting. Prediction of multivariate chaotic time seriesvia radial basis function neural network [ J]. Mathematics, 2013 , 18(4):23 -33.
  • 3张淑清,贾健,高敏,韩叙.混沌时间序列重构相空间参数选取研究[J].物理学报,2010,59(3):1576-1582. 被引量:86
  • 4潘玉民,邓永红,张全柱.基于QPSO-FNN的混沌时间序列预测[J].计算机应用与软件,2013,30(8):91-94. 被引量:3
  • 5张金良,谭忠富.混沌时间序列的混合预测方法[J].系统工程理论与实践,2013,33(3):763-769. 被引量:15
  • 6纪玲玲,林振山,王昌雨,张志华.最小二乘回归支持向量机对非线性时间序列预测的试验分析[J].解放军理工大学学报(自然科学版),2009,10(1):92-97. 被引量:16
  • 7Xiang Zheng,Zhang Taiyi,Sun Jiancheng. Modeling of chaotic systemswith multi-wavelet transform combined with recurrent least squares sup-port vector machines [ J ]. International Journal of Wavelets, Multi-reso-lution and Information Processing,2010,5(1) :1 - 13.
  • 8Ilhan Ilhan, Yunus Emre Goktepe,Sirzat Kahramanli. A genetic algo-rithm-support vector machine method for selecting tag single nucleotidepolymorphisms [ J ]. International Journal of Innovative Computing,2013,9(2):525 -541.
  • 9Xiang Changsheng,Qu Peixin,Qu Xilong. A chaotic time series forecas-ting model based on parameters simultaneous optimization algorithm[J]. Journal of Information & Computational Science,2013,15(10) :1-14.
  • 10熊南,刘百芬.基于自适应粒子群优化LSSVM的网络流量在线预测[J].计算机应用与软件,2013,30(9):21-24. 被引量:22

二级参考文献71

共引文献229

同被引文献5

引证文献1

二级引证文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部