期刊文献+

超图拉普拉斯稀疏编码在图像识别中的应用

APPLICATION OF HYPERGRAPH LAPLACIAN SPARSE CODING IN IMAGE RECOGNITION
下载PDF
导出
摘要 稀疏编码已经成为一种有效的降维方法。由于编码字典的超完备性、特征之间的局部邻接信息和相似度在编码过程中丢失而降低了稀疏编码的识别率。为了保护特征之间的距离关系和相似信息,提出一种超图稀疏编码框架。这种结构融合相似度权重进入稀疏编码计算过程中,同时结合超图理论,对稀疏编码方法进行改进,增强了稀疏编码的鲁棒性。最后,在Caltech及Scene两大场景数据库上的实验验证了所提方法的有效性。 Sparse coding has been an effective dimensionality reduction method. Due to the over-completeness of the encoding dictionary, the losses of local adjacency information between features and similarity during the encoding process lead to the reduction of the recognition rate of sparse coding. In order to preserve distance relationship between the features and similarity information, we propose a hypergraph sparse coding framework, in this structure the similarity weight is integrated into sparse coding calculation. Meanwhile, hypergraph theory is combined to improve the sparse coding in enhancing its robustness. In end of the paper, the effectiveness of the proposed method is verified through experiments on two scene databases of Caltech and Scene.
出处 《计算机应用与软件》 CSCD 北大核心 2014年第10期183-185,250,共4页 Computer Applications and Software
基金 广东省教育学"十二五"规则课题(2012JK304)
关键词 图像识别 特征抽取 拉普拉斯 稀疏编码 超图理论 Image recognition Feature extraction Laplacian matrix Sparse coding Hypergraph theory
  • 相关文献

参考文献10

  • 1Mariel J’Barh F\Ponce J,et al. Non-local sparse models for image res-toration [ C J//IEEE 12th International Conferen<*e on Computer Vi-sion ,2009 :2272-2279.
  • 2Wright J,Yang A Y,Ganesh A,et al. Robust face recognition via sparserepresentation [ J ]. IEEE Transactions on Pattern Analysis and MachineIntelligence,2009,31 ( 2 ) : 210 - 227.
  • 3Gao S, Tsang I W H, Chia L T, et al. Local features are not lonely-Laplacian sparse coding for image classification [ C ] //IEEE Conferenceon Computer Vision and Pattern Recognition ( CVPR) , 2010 : 3555-3561.
  • 4Gao S, Tsang I W H, Chia L T, et al. Local features are not lonely-Laplacian sparse coding for image classification [ C]//IEEE Conferenceon Computer Vision and Pattern Recognition ( CVPR) , 2010 : 3555-3561.
  • 5Xie Z,Liu G,Fang Z. Face Recognition Based on Combination of Hu-man Perception and Local Binary Pattern [ J]. Lecture Notes in Com-puter Science,2012,72(2) :365 -373.
  • 6Lu Jiwen,Tan Yappang,Wang Gang. Discriminative Multi-Manifold A-nalysis for Face Recognition from A Single Training Sample per Person[C]//Barcelona,Nov 6-13. In Proceedings of International Confer-ence on Computer Vision ,2011:1943 - 1950.
  • 7Connolly J F,Granger E,Sabering R. An adaptive classification systemfor video-based face recognition [ J]. Information Sciences,2012,192:50-70.
  • 8Chen X,Lin Q H,Kim S,et al. An efficient proximal-gradient methodfor single and multi-task regression with structured scarcity [ J ]. Jour-nals of statistic source,2010,1050 :26.
  • 9Yang J, Yu K, Gong Y, et al. Linear spatial pyramid matching usingsparse coding for image classi.ication[ C]//IEEE Conference on Com-puter Vision and Pattern Recognition, 2009 ; 1794 - 1801.
  • 10Lazebnik S, Schmidt C, Ponce J. Beyond bags of features : Spatial pyra-mid matching for recognizing natural scene categories [ C]//2006 IEEEComputer Society Conference on Computer Vision and Pattern Recogni-tion,2006,2:2169-2178.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部