期刊文献+

多流形判别分析在人脸识别中的研究

RESEARCH ON MULTI-MANIFOLD DISCRIMINANT ANALYSIS IN FACE RECOGNITION
下载PDF
导出
摘要 局部保持投影LPP(Locality Preserving Projection)是一种有效的非线性降维方法,能够使投影降维后的数据与原输入空间中的相似局部结构保持一致,但是该方法没有充分利用类间样本点的权重等重要信息。为了解决这个问题,提出基于Fisher准则的多流形判别分析FMMDA(Fisher Multi-Manifold Discriminant Analysis)方法。结合Fisher准则训练样本类内拉普拉斯图和样本均值类间拉普拉斯图,既保持了原样本的相似局部结构,又充分地利用了不同类别之间的权重。在ORL及Yale人脸库上验证了该方法的有效性。与其他几种最先进的方法相比,FMMDA方法取得了更好的识别效果。 Locality preserving projection (LPP) is an effective nonlinear dimensionality reduction method which could preserve the similar local structure of the dimensionality-reduced data after projection in accord with that in original input space. However, it fails to take full advantage of the important information of the weights of between-class sample points. In order to address this issue, a new multi-manifold discriminant analysis method based on Fisher criterion is proposed, which combines the within-class Laplacian graph of training samples and the between-class Laplacian graph of sample average in Fisher criterion, while preserving the similar local structure of original sample, it also brings the weights between different classes into full play. The effectiveness of the method has been validated on ORL and Yale face database. Comparing with other state-of-the-art methods, the proposed FMMDA method achieves better recognition effect.
出处 《计算机应用与软件》 CSCD 北大核心 2014年第10期189-191,196,共4页 Computer Applications and Software
关键词 人脸识别 特征提取 局部保持投影 FISHER准则 多流形判别分析 Face recognition Feature extraction Locality preserving projection Fisher criterion Multi-manifold discriminant analysis
  • 相关文献

参考文献10

  • 1He X, Yan S, Hu Y, et al. Face recognition using laplacianfaces[J]. Pattern Analysis and Machine Intelligence,IEEE Transactionson, 2005,27(3)-.328 -340.
  • 2Donohue D L, Grimes C. Hessian Eigen maps: Locally linear embed-ding techniques for high-dimensional data [ J] . Proceedings of the Na-tional Academy of Sciences, 2003,100( 10) :5591 -5596.
  • 3Yu W, Tang X,Liu C. Face recognition using discriminant localitypreserving projections [ J ]. Image and Vision computing, 2006, 24(3):239-248.
  • 4Li B, Huang D S, Wang C, et al. Feature extraction using constrainedmaximum variance mapping[ J]. Pattern Recognition,2008 ,41 ( 11 ):3287-3294.
  • 5Wang H, Chen S,Hu Z,et al. Locality-preserved maximum informa-tion projection [ J ]. Neural Networks,IEEE Transactions on,2008,19(4):571 -585.
  • 6Fu Y,Hong A,Yang J, et al. LPP solution schemes for use with facerecognition[ J]. Pattern Recognition,2010,43(12) :4165 -4176.
  • 7Yang W, Sun C, Zhang L. A multi-manifold discriminant analysismethod for image feature extraction[ J]. Pattern Recognition,2011,44(8) :1649-1657.
  • 8Zhao D, Lin Z, Xiao R, et al. Linear laplacian discrimination for fea-ture extraction: U.S. Patent 8,218,880[P]. 2012 -7 - 10.
  • 9肖扬,宋斌,雷勇,吴祖煌.基于流形学习的医院绩效评价方法研究与实践[J].计算机应用与软件,2011,28(6):286-288. 被引量:2
  • 10刘波,张鸿宾.一种基于边界约束的流形展开方法[J].自动化学报,2010,36(4):488-498. 被引量:4

二级参考文献25

  • 1方亚,严春香.应用主成分分析法综合评价医院工作质量[J].中国卫生统计,2005,22(1):29-31. 被引量:21
  • 2Tenenbaum J B, de Silva V, Langford J C. A global geometric framework for nonlinear dimensionality reduction. Science, 2000, 290(5500): 2319-2323.
  • 3Roweis S T, Saul L K. Nonlinear dimensionality reduction by locally linear embedding. Science, 2000, 290(5500): 2323-2326.
  • 4Belkin M, Niyogi P. Laplacian eigenmaps for dimensionality reduction and data representation. Neural Computation, 2003, 15(6): 1373-1396.
  • 5Donoho D L, Grimes C. Hessian eigenmaps: locally linear embedding techniques for high dimensional data. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100(10): 5591-5596.
  • 6Brand M. Charting a manifold. In: Proceedings of Advances in Neural Information Processing Systems. Cambridge, USA: MIT Press, 2003. 1-8.
  • 7Zhang Z Y, Zha H Y. Principal manifolds and nonlinear dimensionality reduction via tangent space alignment. SIAM Journal of Scientific Computing, 2005, 26(1): 313-338.
  • 8Weinberger K Q, Saul L K. Unsupervised learning of image manifolds by semidefinite programming. International Journal of Computer Vision, 2006, 70(1): 77-90.
  • 9Sha F, Saul L K. Analysis and extension of spectral methods for nonlinear dimensionality reduction. In: Proceedings of the 22nd International Conference on Machine Learning. Bonn, Germany: ACM, 2005. 784-791.
  • 10Li Y. Distaace-preserving projection of high-dimensional data for nonlinear dimensionality reduction. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2004, 26(9): 1243-1246.

共引文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部