期刊文献+

基于紫外光离子源高场不对称波形离子迁移谱的化学战剂模拟剂检测 被引量:15

Detection of Chemical Warfare Agent Simulants by UV Photoionization High-Field Asymmetric Ion Mobility Spectrometry
下载PDF
导出
摘要 通过扩散法制得低浓度的对甲基膦酸二甲酯(DMMP)、磷酸三丁酯(TBP)、二甲基亚砜(DMSO)3种化学战剂模拟剂蒸气,并用自制紫外光离子源高场不对称波形离子迁移谱仪(Ultraviolet photoionization high field asymmetric ion mobility spectrometry,UV-FAIMS)对其进行检测,得到不同样品在不同分离电压下特征谱图,并通过对多组分离电压(Dispersion voltage,DV)和补偿电压(Compensation voltage,CV)求解,建立了α2和α4二维谱图,提高了FAIMS的分辨识别能力。此外,对UV-FAIMS的检测灵敏度进行了测定。实验表明,此系统对甲基膦酸二甲酯(DMMP)的检测灵敏度优于0.55μg/L。 Accurate diffusion was used to get low concentrations samples, and then the samples were detected by UV photoionization high-field asymmetric ion Mobility spectrometry (UV-FAIMS). The samples were chemical warfare agent simulants (CWAS) vapor: dimethyl methylphosphonate (DMMP), dimethyl sulfoxide (DMSO), tributyl phosphate (TBP) and dimethyl sulfoxide (DMF). The results of FAIMS spectra data were analyzed by separation of spectra at different dispersion voltage (DV) and compensation voltage (CV). A two-dimensional spectrum of % and a4 of CWAS was established. It was shown that FAIMS could identify CWAS well and have a good sensitivity. Take DMMP as a example, the detection limit was better than O. 55μg/L.
出处 《分析化学》 SCIE EI CAS CSCD 北大核心 2014年第9期1259-1263,共5页 Chinese Journal of Analytical Chemistry
基金 国家自然科学基金(No.61374016) 中科院对外合作重点项目(No.GJHZ1218) 中科院青年创新促进会资助项目~~
关键词 高场不对称波形离子迁移谱 紫外光电离 化学战剂模拟剂 非线性函数系数 High-field asymmetric ion mobility spectrometry Uhralviolet photoionization Chemical Warfare Agent Simulants Nonlinear function coefficients
  • 相关文献

参考文献11

  • 1Sferopoulos R. A Review of Chemical Warfare Agent ( CWA ) Detector Technologies and Commercial-off-the-Shelf Items, Australia Human Protection and Performance Division DSTO Defence Science and Technology Organisation, Australia, 2009.
  • 2张超,魏东炜,李复生.化学战剂检测技术的研究进展[J].理化检验(化学分册),2010,46(2):211-216. 被引量:3
  • 3Hughes R C, Yelton W G, Pfeifer K B, Patel S V. J. Electrochem. Soc. , 2001, 148(4) : H37-H44.
  • 4Miller R A, Eiceman G A, Nazarov E G, King A T. Sensors and Actuators B: Chemical, 2000, 67(3) : 300-306.
  • 5Brown L J, Smith R W, Toutoungi D E, Reynolds J C, Bristow A W T, Ray A, Sage A, Wilson I D, Weston D J, Boyle B, Creaser C S. Anal. Chem. , 2012, 84(9) : 4095-4103.
  • 6张沽,李灵锋,郭大鹏,张嫒,王琦,李鹏,汪小知.分析化学,2013,41(7):986-992.
  • 7Liu Y J, Zhang L H, Wang H W, Zhang X T, Chert C L, Wang H Q, Kong D Y, Chavarria M A, Brugger J. 2013 IEEE and Internet of Things (iThings/CPSCom) , IEEE International Conference on and IEEE Cyber, Physical and Social Com- puting, 2013:1698-1701.
  • 8Guevremont R. J. Chromatogr. A, 2004, 1058(1-2):3-19.
  • 9Kerpen K, Kuklya A, Marks R, Uteschil F, Telgheder U. Water Contamination Emergencies: Managing the ThreatsRoyal Society of Chemistry, 2013 : 365-373.
  • 10Menlyadiev M R, Stone J A, Eiceman G A. Int. J. Ion Mobil Spectrom. , 2012, 15(3) : 123-130.

二级参考文献6

共引文献2

同被引文献104

引证文献15

二级引证文献32

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部