期刊文献+

合金材料中结构转变的晶体相场法模拟 被引量:1

A Phase-field-crystal Model for Structural Transformation in Metal Alloys
下载PDF
导出
摘要 晶体相场方法被用于描述扩散时间尺度上的原子效应,在此基础上,Greenwood结合经典密度泛函理论,通过向自由能函数中引入一组两点相关函数,简化得到结构晶体相场方法。该方法可以用于研究多重组分合金材料的复杂微观结构。与经典密度泛函理论和一般晶体相场方法进行对比,详细论述了结构晶体相场模型的自由能函数以及两点相关函数。简要介绍了结构晶体相场方法在凝固过程、结构转变和复杂缺陷等方面的应用。 The phase-field-crystal models are effectively used to describe the atomistic scale effects over diffusive time scales,on this basis,Greenwood accomplished the structural phase-field-crystal model by introducing twopoint direct correlation functions in the free energy functional that combining with the classical density functional theory.This method is capable of investigating complex microstructures in multi-component alloys.The free energy function and two-point direct correlation functions of structural phase-field-crystal model are reviewed.Then,the applicability in the solidification,structural transformations and complex defects is introduced briefly.
出处 《材料导报》 EI CAS CSCD 北大核心 2014年第17期73-78,共6页 Materials Reports
基金 国家自然科学基金(51075335 10902086 50875217) 西北工业大学基础研究基金(NPU-FFR-JC201005)
关键词 晶体相场模型 模拟 多重组分 结构转变 phase-field-crystal model simulation multi-component structural transformation
  • 相关文献

参考文献32

  • 1Echebarria B,Folch R,Karma A,et al.Quantitative phasefield model of alloy solidification[J].Phys Rev E,2004,70:061604.
  • 2Greenwood M,Haataja M,Provatas N.Crossover scaling of wavelength selection in directional solidification of binary alloys[J].Phys Rev Lett,2004,93:246101.
  • 3Warren J A,Kobayashi R,Carter W C,et al.A continuum model of grain boundaries[J].J Cryst Growth,2000,211:18.
  • 4Warren J A,Kobayashi R,Lobkovsky A E,et al.Extending phase field models of soliification to polycrystalline[J].Acta Materialia,2003,53:6035.
  • 5Haataja M,Léonard F.Influence of mobile dislocation on phase separation in binary alloys[J].Phys Rev B,2004,69:081201.
  • 6Fan D,Chen L Q.Diffuse-interface description of grain boundary motion[J].Acta Metall,1996,45:611.
  • 7Ramakrishnan T,Yussouff M.First-principles order-parameter theory of freezing[J].Phys Rev B,1979,19:2775.
  • 8Elder K R,Mark Katakowski,Mikko Haataja,et al.Modeling elasticity in crystal growth[J].Phys Rev Lett,2002,88:245701.
  • 9Elder K R,Nikolas Provatas,Joel Berry,et al.Phase-field crystal modeling and classical density functional theory of freezing[J].Phys Rev B,2007,75:064107.
  • 10Tegze G,Gránásy L,Tóth G I,et al.Diffusion-controlled anisotropic growth of stable and metastable crystal polymorphs in the phase the phase-field crystal model[J].Phys Rev Lett,2009,3:101.

共引文献1

同被引文献5

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部