期刊文献+

Acrylamide inhibits nerve sprouting induced by botulinum toxin type A

Acrylamide inhibits nerve sprouting induced by botulinum toxin type A
下载PDF
导出
摘要 Botulinum toxin type A is a potent muscle relaxant that blocks the transmission and release of acetylcholine at the neuromuscular junction. Intramuscular injection of botulinum toxin type A has served as an effective and safe therapy for strabismus and focal dystonia. However, muscular weakness is temporary and after 3-4 months, muscle strength usually recovers because function- al recovery is mediated by nerve sprouting and reconstruction of the neuromuscular junction. Acrylamide may produce neurotoxic substances that cause retrograde necrotizing neuropathy and inhibit nerve sprouting caused by botulinum toxin type A. This study investigated whether acrylamide inhibits nerve sprouting after intramuscular injection of botulinum toxin type A. A tibial nerve sprouting model was established through local injection of botulinum toxin type A into the right gastrocnemius muscle of Sprague-Dawley rats. Following intramuscular injection, rats were given intraperitoneal injection of 3% acrylamide every 3 days for 21 days. Nerve sprout- ing appeared 2 weeks after intramuscular injection of botulinum toxin type A and single-fiber electromyography revealed abnormal conduction at the neuromuscular junction I week after intra- muscular injection of botulinum toxin type A. Following intraperitoneal injection of acrylamide, the peak muscle fiber density decreased. Electromyography jitter value were restored to normal levels 6 weeks after injection. This indicates that the maximal decrease in fiber density and the time at which functional conduction of neuromuscular junction was restored were delayed. Addition- ally, the increase in tibial nerve fibers was reduced. Acrylamide inhibits nerve sprouting caused by botulinum toxin type A and may be used to prolong the clinical dosage of botulinum toxin type A. Botulinum toxin type A is a potent muscle relaxant that blocks the transmission and release of acetylcholine at the neuromuscular junction. Intramuscular injection of botulinum toxin type A has served as an effective and safe therapy for strabismus and focal dystonia. However, muscular weakness is temporary and after 3-4 months, muscle strength usually recovers because function- al recovery is mediated by nerve sprouting and reconstruction of the neuromuscular junction. Acrylamide may produce neurotoxic substances that cause retrograde necrotizing neuropathy and inhibit nerve sprouting caused by botulinum toxin type A. This study investigated whether acrylamide inhibits nerve sprouting after intramuscular injection of botulinum toxin type A. A tibial nerve sprouting model was established through local injection of botulinum toxin type A into the right gastrocnemius muscle of Sprague-Dawley rats. Following intramuscular injection, rats were given intraperitoneal injection of 3% acrylamide every 3 days for 21 days. Nerve sprout- ing appeared 2 weeks after intramuscular injection of botulinum toxin type A and single-fiber electromyography revealed abnormal conduction at the neuromuscular junction I week after intra- muscular injection of botulinum toxin type A. Following intraperitoneal injection of acrylamide, the peak muscle fiber density decreased. Electromyography jitter value were restored to normal levels 6 weeks after injection. This indicates that the maximal decrease in fiber density and the time at which functional conduction of neuromuscular junction was restored were delayed. Addition- ally, the increase in tibial nerve fibers was reduced. Acrylamide inhibits nerve sprouting caused by botulinum toxin type A and may be used to prolong the clinical dosage of botulinum toxin type A.
出处 《Neural Regeneration Research》 SCIE CAS CSCD 2014年第16期1525-1531,共7页 中国神经再生研究(英文版)
基金 supported by TCM General Research Project of Zhejiang Province,No.2014ZA071 Health General Research Project of Zhejiang Province,No.2014KYA106
关键词 nerve regeneration peripheral nerve regeneration botulinum toxin type A ACRYLAMIDE nerve sprouting ELECTROMYOGRAPHY nerve fibers neuromuscular junction single-fiber EMG fiberdensity action potential mean consecutive difference dysmyotonia neural regeneration nerve regeneration peripheral nerve regeneration botulinum toxin type A acrylamide nerve sprouting electromyography nerve fibers neuromuscular junction single-fiber EMG fiberdensity action potential mean consecutive difference dysmyotonia neural regeneration
  • 相关文献

参考文献4

二级参考文献42

共引文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部