期刊文献+

Cutaneous sensory nerve as a substitute for auditory nerve in solving deaf-mutes' hearing problem: an innovation in multi-channel-array skin-hearing technology 被引量:2

Cutaneous sensory nerve as a substitute for auditory nerve in solving deaf-mutes' hearing problem: an innovation in multi-channel-array skin-hearing technology
下载PDF
导出
摘要 The current use of hearing aids and artificial cochleas for deaf-mute individuals depends on their auditory nerve. Skin-hearing technology, a patented system developed by our group, uses a cutaneous sensory nerve to substitute for the auditory nerve to help deaf-mutes to hear sound. This paper introduces a new solution, multi-channel-array skin-hearing technology, to solve the problem of speech discrimination. Based on the filtering principle of hair cells, external voice sig- nals at different frequencies are converted to current signals at corresponding frequencies using electronic multi-channel bandpass filtering technology. Different positions on the skin can be stimulated by the electrode array, allowing the perception and discrimination of external speech signals to be determined by the skin response to the current signals. Through voice frequen- cy analysis, the frequency range of the band-pass filter can also be determined. These findings demonstrate that the sensory nerves in the skin can help to transfer the voice signal and to dis- tinguish the speech signal, suggesting that the skin sensory nerves are good candidates for the replacement of the auditory nerve in addressing deaf-mutes' hearing problems. Scientific hearing experiments can be more safely performed on the skin. Compared with the artificial cochlea, multi-channel-array skin-hearing aids have lower operation risk in use, are cheaper and are more easily popularized. The current use of hearing aids and artificial cochleas for deaf-mute individuals depends on their auditory nerve. Skin-hearing technology, a patented system developed by our group, uses a cutaneous sensory nerve to substitute for the auditory nerve to help deaf-mutes to hear sound. This paper introduces a new solution, multi-channel-array skin-hearing technology, to solve the problem of speech discrimination. Based on the filtering principle of hair cells, external voice sig- nals at different frequencies are converted to current signals at corresponding frequencies using electronic multi-channel bandpass filtering technology. Different positions on the skin can be stimulated by the electrode array, allowing the perception and discrimination of external speech signals to be determined by the skin response to the current signals. Through voice frequen- cy analysis, the frequency range of the band-pass filter can also be determined. These findings demonstrate that the sensory nerves in the skin can help to transfer the voice signal and to dis- tinguish the speech signal, suggesting that the skin sensory nerves are good candidates for the replacement of the auditory nerve in addressing deaf-mutes' hearing problems. Scientific hearing experiments can be more safely performed on the skin. Compared with the artificial cochlea, multi-channel-array skin-hearing aids have lower operation risk in use, are cheaper and are more easily popularized.
出处 《Neural Regeneration Research》 SCIE CAS CSCD 2014年第16期1532-1540,共9页 中国神经再生研究(英文版)
基金 supported by the National Natural Science Foundation of China,No.60672001 Special Fund of Education Department of Shaanxi Province,China,No.05JC03
关键词 nerve regeneration peripheral nerve skin-hearing MULTI-CHANNEL electrode array aid DEAF band-pass filter voice NSFC grant neural regeneration nerve regeneration peripheral nerve skin-hearing multi-channel electrode array aid deaf band-pass filter voice NSFC grant neural regeneration
  • 相关文献

参考文献15

二级参考文献124

共引文献41

同被引文献17

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部