期刊文献+

基于DTI的脑白质电导率张量计算模型比较研究 被引量:1

Comparative Study on Conductivity Tensor Calculation Models of Cerebral White Matter Based on DTI
下载PDF
导出
摘要 目的研究脑白质电导率与水分子扩散系数之间的关系,解决脑白质各向异性电导率张量计算模型存在的问题。方法从电化学角度出发,引入结构系数,推导脑白质电导率与水分子扩散系数之间的关系;以实验得到的扩散张量数据为基础,计算了线性关系模型、体积约束模型和电化学模型的脑白质电导率张量值,并对计算结果进行了分析和比较。结果证明了白质电导率与水分子扩散系数之间的线性关系。以线性关系模型为基础,比较了上述三种模型计算结果的相对误差,发现计算结果有较大的差异。结论线性关系模型和电化学模型的计算结果相对可信。由于电化学模型只考虑了主要离子的影响,致使计算电导率存在误差。本文通过引入结构系数,提高了电化学模型计算电导率张量的精度。 Objective To solve the problems of computational model of anisotropic conductivity of cerebral white matter by studying the relationship between cerebral white matter conductivity and diffusion coefficient of water molecules. Methods From the aspect of electrochemistry,the structural coefficient was introduced,the relationship between cerebral white matter conductivity and diffusion coefficient of water molecules was deduced. Based on the diffusion tensor data obtained from the experiments,the cerebral white matter conductivity tensor values calculated from linear relationship model,volume constraint model and electrochemistry model were presented. The results from these three models were compared and analyzed. Results The linear relationship between anisotropic conductivity of white matter and diffusion coefficient of water molecules was proved.Based on the linear relationship model,the relatively errors of the computational results of each model were compared. There was significant difference in the computational results from three models. Conclusion The calculation results of anisotropic conductivity tensor of linear relationship model and electrochemistry model are relative reliable. Since the electrochemical model only considers the impact of major ions,there are some errors for conductivity calculation. The accuracy of the calculation of anisotropic conductivity tensor was improved by electrochemistry model.
出处 《航天医学与医学工程》 CAS CSCD 北大核心 2014年第4期246-251,共6页 Space Medicine & Medical Engineering
基金 国家自然科学基金(51267010) 甘肃省杰出青年基金(1308RJDA013)
关键词 脑白质 扩散张量成像 电导率张量 计算模型 cerebral white matter diffusion tensor imaging(DTI) conductivity tensor calculation models
  • 相关文献

参考文献16

  • 1Daniel Gullmar, Jens Haueisen, Michael Eiseh, et al. Influ- ence of anisotropy conductivity on EEG source reconstruction : investigations in a rabbit model [ J ]. IEEE Transactions On Biomedical Engineering, 2006, 53(9): 1841-1850.
  • 2Haueisen J, Tuch DS, Ramon C, et al. The influence of brain tissue anisotropy on human EEG and MEG[J]. NeuroImage, 2002. 15(1), 159-166.
  • 3李璟,闫丹丹.脑白质非均质电导率特性对脑电正问题影响的仿真研究[J].中国计量学院学报,2009,20(2):180-184. 被引量:2
  • 4闫丹丹,高诺,张孝通,朱善安,HE Bin.基于扩散张量成像技术的大脑组织核磁共振电导率重构的仿真研究[J].中国生物医学工程学报,2009,28(1):58-64. 被引量:1
  • 5吴占雄,李璟,朱善安.脑白质电导率各向异性及非均质对头皮脑电分布的影响[J].传感技术学报,2010,23(11):1523-1527. 被引量:4
  • 6Basser PJ, Mattiello J, Le Bihan D. MR Diffusion tensor spectroscopy and imaging[ J]. Biophysical Journal, 1994, 66 ( 1 ) : 259-267.
  • 7Tuch DS,Wedeen VJ, Dale AM, et al. Conductivity mapping of biological tissue using diffusion MRI [ J ]. Ann N Y Acad Sci, 1999, 888: 314-316.
  • 8Tuch DS,Wedeen V J, Dale AM, George JS, Belliveau JW. Conductivity tensor mapping of the human brain using diffu- sion tensor MR! [ J ]. Proc Nat Acad Sci USA, 2001, 98 (20) : 11697-11701.
  • 9Wolters CH, Anwander A, Tricoche X, et al. Influence of tissue conductivity anisotropy on EEG/MEG field and return current computation in a realistic head model: A simulation and visualization study using high-resolution finite element modeling [ J ]. NeuroImage, 2006, 30 ( 3 ) : 813-826.
  • 10Wang Kun,Zhu S, Mueller BA, et al. A new method to de- rive white matter conductivity from diffusion tensor MRI [ J ]. IEEE Trans Biomed Eng, 2008. 55 (10) : 2418-2416.

二级参考文献78

  • 1徐文龙,陶贵生,夏灵.MRI梯度磁场下人体心脏感应涡流仿真研究[J].中国计量学院学报,2005,16(3):195-198. 被引量:3
  • 2闫丹丹,张孝通,朱善安,Bin He.头部组织三维核磁共振电阻抗成像算法的仿真研究[J].生物物理学报,2006,22(6):461-470. 被引量:7
  • 3HE B.Neural Engineering[M].New York:Kluwer Academic/Plenum Publishers,2005:221-223.
  • 4LIU Z M,DING L,HE B.Integration of EEG/MEG with MRI and fMRI[J].IEEE Engineering in Medicine and Biology Magzine,2006,25(4):46-53.
  • 5ZHANG Y C,VAN DRONGELEN W,HE B.Estimation of in vivo Brain-to-skull conductivity ratio in humans[J].Applied Physics Letters,2006,89(22):223903-2239033.
  • 6LI J,WANG K,ZHU S A,et al.Effects of holes on EEG forward solutions using a realistic geometry head model[J].Journal of Neural Engineering,2007,4 (3):197-204.
  • 7RANCK J B.Specific impedance of rabbit cerebral cortex[J].Experimental Neurology,1963,7(2):144-152.
  • 8NICHOLSON P W.Specific impedance of cerebral white mattar[J].Experimental Neurology,1965,13 (4):386401.
  • 9GABRIEL C,GABRIEL S,CORTHOUT E.The dielectrie properties of biological tissues:I Literature survey[J].Physics in Medicine and Biology,1996,41(11):2231-2249.
  • 10MARIN G,GUERIN C,BAILLET S,et al.Influence of skull anisotropy for the forward and inverse problem in EEG:Simulation studies using the FEM on realistic head models[J].Human Brain Mapping,1998,6(4):250-269.

共引文献7

同被引文献15

  • 1Sakkalis V. Review of advanced techniques for the estimation of brain connectivity measured with EEG/MEG [ J ]. Comput- ers in Biology and Medicine, 2011, 41 (12) : 1110-1117.
  • 2Penke L,Mauiega S, Bastin ME, et al. Brain white matter tract integrity as a neural foundation for general intelligence [J]. Molecular Psychiatry,2012, 17(10) : 1026-1030.
  • 3Sekino M, Yamaguchi K, Iriguchi N, et al. Conductivity ten- sor imaging of the brain using diffusion-weighted magnetic res- onance imaging [J].Journal of applied physics, 2003, 93 (10) : 6730-6732.
  • 4Basser PJ, Jones DK. Diffusion-tensor MRI: theory, experi- mental design and data analysis - a technical review [ J ]. NMR in Biomedicine,2002, 15 (7) : 456-467.
  • 5Tuch DS, Reese TG, Wiegell MR, et al. Diffilsiun MRI of complex neural architecture [ J ]. Neuron, 2003, 40 (5) : 885-895.
  • 6Chao YP, Chen JH, Cho KH, et al. A muhiple streamline approach to high angular resolution diffusion traetography [ J]. Medical Engineering & Physics, 2008, 30 (8) : 989- 996.
  • 7Jeffrey IB, Sung WC, Pratik M, et al. Probabilistic stream line q-ball tractography using the residual bootstrap [ J ]. Neurohnage, 2008, 39 ( 1 ) : 215-222.
  • 8Stamatios NS, Li B, Paul SM, et al. Brain tractograpiay using Q-ball imaging and graph theory: improved connectivities through fiber crossings via a model-based approach [ J]. Neu- roImage, 2010, 49(3): 2444-2456.
  • 9Girard G,Whittingstall K, Deriche R, et al. Towards quanti- tative connectivity analysis: reducing tractography biases[J]. Neurolmage, 2014, 98 ( 7 ) : 266-278.
  • 10Wedeen V J, Wang RP, Schmahmann JD, et al. Diffusion spectrum magnetic resonance imaging tractography of crossing fibers [ J ]. Neurohnage, 2008, 41 (4) : 1267-1277.

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部