摘要
为提高基于谱分解的图像匹配算法的匹配精度,通过对中心对称局部二值模式(CS-LBP)进行修正,并引入空间金字塔尺度划分方法,获取图像局部特征描述向量;并以此向量之间相似性作为度量方式,重构邻接矩阵,通过谱分解获取特征点匹配关系.通过对比实验,结果表明,该算法匹配精度较高.
In order to improve the matching accuracy of image matching algorithm based on spectral decomposition, the image local feature description vector is obtained by improving Center-Symmetric Local Binary Pattern(CS-LBP) and introducing the spatial pyramid method of scale division. Then the adjacent matrix is reconstructed according to the similarity between description vectors,and the match-ing relation between the image feature points is acquired through the spectral decomposition. The con-trast experiment results show that the matching algorithm has high accuracy.
出处
《淮北师范大学学报(自然科学版)》
CAS
2014年第3期51-56,共6页
Journal of Huaibei Normal University:Natural Sciences
基金
国家自然科学基金(61172127
61401001)
安徽省自然科学基金(1208085QF104)
安徽省高校优秀青年人才基金(2012SQRL017ZD)
安徽大学2013年大学生科研训练计划项目资助
关键词
图像匹配
空间金字塔
谱分解
中心对称局部二值模式
image matching
spatial pyramid
spectral decomposition
Center-Symmetric Local Binary Pattern(CS-LBP)