期刊文献+

一类具有脉冲接种的SIQRS传染病模型的稳定性分析

Stability analysis of an SIQRS epidemic model with impulsive vaccination
下载PDF
导出
摘要 研究具有常数输入及非线性传染率的脉冲接种SIQRS传染病模型,利用脉冲微分方程的Floquet定理及比较定理得到了无病周期解全局渐近稳定的充分条件及系统一致持久的充分条件. This paper deals with an SIQRS epidemic model of impulsive vaccination with constant input and nonlinearity of incidence rate. Using the Floquet theorem and compare theorem of impulsive differential equation, the sufficient condition is obtained under which the disease -free periodic solution is globally asymptotically sta- ble. It is proved that the system is uniform permanence under some conditions.
出处 《渤海大学学报(自然科学版)》 CAS 2014年第3期211-217,共7页 Journal of Bohai University:Natural Science Edition
基金 国家自然科学基金项目(No:61070242) 辽宁省教育厅项目(No:L2012404)
关键词 脉冲接种 隔离 无病周期解 全局渐近稳定 一致持久 impulsive vaccination quaranti disease - free periodic solution globally asymptotically sta-ble uniform permanence
  • 相关文献

参考文献5

二级参考文献29

  • 1付景超,井元伟,张中华,张嗣瀛.具垂直传染和连续预防接种的SIRS传染病模型的研究[J].生物数学学报,2008,23(2):273-278. 被引量:33
  • 2周艳丽,王贺桥,王美娟,徐长永.具有脉冲预防接种的SIQR流行病数学模型[J].上海理工大学学报,2007,29(1):11-16. 被引量:10
  • 3庞国萍,陈兰荪.具饱和传染率的脉冲免疫接种SIRS模型[J].系统科学与数学,2007,27(4):563-572. 被引量:25
  • 4Kermack W O, McKendrick A G. Contributions to the matlhematical theory of epidemics-Part 1[J].Proc RoySoc London Ser A, 1927,115(3) :700-721.
  • 5Mena-Lorca J, Hethcote H W. Dynamic models of infectious diseases as regulators of population sizes[J]. J Math Biol, 1992,30(4):693-716.
  • 6Li J, Ma Z. Qualitative analysis of SIS epidemic model with vaccination and varying total population size[J]. Math Comput Modelling ,2002,35(11/12) :1235-1243.
  • 7Heesterbeck J A P, Metz J A J. The saturating contact rate in marriage-and epidemic models[ J]. J Math Biol, 1993,31(2) :529-539.
  • 8Brauer F, Van den Driessche P. Models for transmission of disease with immigration of infectives[ J].Math Biosci, 2001,171(2): 143-154.
  • 9Han L,Ma Z,Hethcote H W. Four predator prey models with infectious diseases[J]. Math Comput Modelling, 2001,34(7/8): 849-858.
  • 10LaSalle J P. The Stability of DynamicalSystem [ M]. New York: Academic Press, 1976.

共引文献74

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部