摘要
研究了基于自散焦克尔非线性的PT对称三角格子中双峰光孤子的存在性及稳定性。采用改进的平方算子法(MSOM)迭代计算出孤子的数值解,发现双峰之间具有相同相位的双峰光孤子存在于第一带隙,并且可以在某个范围内稳定传输。由傅里叶配点法得到的线性稳定性与非线性模拟传输的结果是一致的。此外,这种PT对称的双峰光孤子对入射角度非常敏感,从不同角度入射的光孤子具有不同的传输特性。
We report the existence and stability of two peak soIiton in the PT-symmetric triangular optical lattice with self- defocusing Kerr nonlinearity. The solution of two-peak soliton is obtained by Modified Squared Operate Method (MSOM). It is found that the two-peak soliton exists in the first gap and can be stable in a certain range of first gap. By Fourier collec- tion method, the linear stability of two-peak soliton is obtained, and it is in accordance with the corresponding propagation simulation. In addition, this kind of PT-symmetric soliton with two peaks is sensitive to the launch angle. It displays differ- ent transition characters with different launch angles.
出处
《光学与光电技术》
2014年第5期33-37,共5页
Optics & Optoelectronic Technology
基金
广东省战略性新兴产业专项(2011A081301004
2012A080302003)
中央高校基本科研业务费(2014ZP00017)资助项目
关键词
双峰光孤子
克尔非线性
PT对称
三角格子
傅里叶配点法
two-peak soliton Kerr nonlinearity PT-symmetric triangular lattice Fourier collection method