摘要
本文首先对于罚函数遗传算法构造了合适的适应度计算方式,其次将适当的修补算子加入修补遗传算法中,保证修补的随机性和有效性;然后在两者的交叉、变异操作之后都加入进化突变算子,增强了他们的局部搜索能力;最后针对不同规模的基站选址问题,分别采用加入进化突变前后的罚函数遗传算法和修补遗传算法进行仿真,结果验证加入进化突变的修补遗传算法在求解大规模的基站选址问题时效率最高。
In the light of the characteristics of base station location for constrained optimization problems, this paper uses the penalty function genetic algorithm and repair genetic algorithm to solve the problem in compare.First of all, appropriate iftness calculation was constructed by the penalty function genetic algorithm , not only reduces the amount of calculation, also improves its generality.Next, it guarantees the randomness and effectiveness of repair by adding the appropriate repair operator to repair genetic algorithms.Then, they can enhance their ability of local search by adding evolution mutation operator after crossover and mutation operation. Finally, according to different sizes of base station location problems, it uses repair genetic algorithm and penalty function genetic algorithm before and after evolutionary mutation to simulation respectively, it veriifes the efifciency of repair genetic algorithm that adds evolutionary mutation in solving large-scale base station location problem is the highest.
出处
《湖北成人教育学院学报》
2014年第5期1-3,共3页
Journal of Hubei Adult Education Institute
关键词
运筹学
基站选址
遗传算法
Operations research
Base station location
Genetic algorithm