摘要
Hierarchical mobile IPv6 (HMIPv6) introduces a mobility anchor point to reduce the signaling overhead and handoff latency. In this paper, we apply the matrix-analytical approach to explore the performance measures of the ongoing mobile nodes (MNs) drop and new MNs block probabilities of mobility anchor point with a guard bandwidth reservation scheme. We apply the Markovian arrival process (MAP) to model ongoing MNs and new MNs. Five related performance measures are derived, including the long-term new MN block and ongoing MN drop probabilities, and the three short-term measures of average length of a block period and a non-block period, as well as the conditional ongoing MN drop probability during a block period. These performance measures greatly assist the guard bandwidth reservation mechanism in determining a proper threshold guard bandwidth. The results presented in this paper can provide guidelines for designing adaptive algorithms to adjust the threshold in the guard bandwidth reservation scheme.
Hierarchical mobile IPv6 (HMIPv6) introduces a mobility anchor point to reduce the signaling overhead and handoff latency. In this paper, we apply the matrix-analytical approach to explore the performance measures of the ongoing mobile nodes (MNs) drop and new MNs block probabilities of mobility anchor point with a guard bandwidth reservation scheme. We apply the Markovian arrival process (MAP) to model ongoing MNs and new MNs. Five related performance measures are derived, including the long-term new MN block and ongoing MN drop probabilities, and the three short-term measures of average length of a block period and a non-block period, as well as the conditional ongoing MN drop probability during a block period. These performance measures greatly assist the guard bandwidth reservation mechanism in determining a proper threshold guard bandwidth. The results presented in this paper can provide guidelines for designing adaptive algorithms to adjust the threshold in the guard bandwidth reservation scheme.