摘要
利用牛顿法收敛性强的优点,将一阶灵敏度和二阶灵敏度引入牛顿法,得到基于二阶灵敏度的牛顿参数辨识法,并将其应用于电力负荷参数辨识。采用仿真算例将该方法与粒子群算法的参数辨识结果进行对比验证,结果表明牛顿参数辨识法的辨识精度高、辨识计算量小、辨识鲁棒性好。
Taking the advantage of strong convergence of the Newton method, we introduce the first-order sensitivity and second-order sensitivity to the method, and propose the Newton parameter identification method based on the second-order sensitivity. We applied the proposed method to parameter identification of electric loads. Through simulation, we compared the proposed method with the PSO algorithm. The results show that the proposed method has higher identification precision, utilizes a smaller amount of calculation, and is more robust.
出处
《河海大学学报(自然科学版)》
CAS
CSCD
北大核心
2014年第5期460-464,共5页
Journal of Hohai University(Natural Sciences)
基金
国家高技术研究发展计划(863计划)(2012AA050215)
国家电网公司大电网重大专项(SGCC-MPLG003
025-2013)
关键词
电力负荷参数
参数辨识
指标灵敏度
牛顿法
粒子群算法
electric load parameter
parameter identification
index sensitivity
Newton method
PSO algorithm