期刊文献+

温度、应变率对地质聚合物混凝土抗压强度的影响 被引量:7

Effects of temperature and strain rate on compressive strength of geopolymeric concrete
下载PDF
导出
摘要 采用自主研制的高温SHPB试验系统,对高温条件下地质聚合物混凝土的动态抗压强度进行了试验研究。结果表明:200℃时地质聚合物混凝土的动态抗压强度较常温时有所增长,800℃时强度则急剧下降;应变率随弹速近似线性增长;同一弹速水平下,200~600℃时的应变率与常温接近,800℃时较常温提高明显;高温条件下,由侧向约束引起的附加应力可以忽略不计,试验所测得的动态强度增长因子(DIF)的应变率增强效应反应了材料的本质属性;在30~30s^-1范围内,高温下地质聚合物混凝土的DIF与应变率的对数呈线性关系,且温度越高,应变率效应越明显。 The dynamic compressive strength of using a self-designed high temperature SHPB system. geopolymeric concrete under high temperatures was investigated The results showed that the dynamic compressive strength of geopolymeric concrete at 200℃ is higher than that at room temperature, but it drops dramatically at 800℃ ; the strain rate increases approximately linearly with increase in projectile velocity. At a given projectile velocity, the strain rate changes slightly at 200 - 600℃ and rises evidently at 800~C compared with that at room temperature ; under elevated temperatures, the additional stress of geopolymeric concrete specimens caused by lateral confinement can be ignored, thus the strain rate effect on the dynamic increase factor (DIF) obtained from test data can reflect the inherent nature of geopolymeric concrete; DIF increases linearly with increase in the logarithm of strain rate over the strain rate range of 30 - 130 s^-1 ; the higher the temperature, the more obvious the strain rate effect.
出处 《振动与冲击》 EI CSCD 北大核心 2014年第17期197-202,共6页 Journal of Vibration and Shock
基金 国家自然科学基金资助项目(51378497) 国家自然科学基金资助项目(51208507)
关键词 高温 应变率 地质聚合物混凝土 抗压强度 elevated temperature strain rate geopolymeric concrete compressive strength
  • 相关文献

参考文献14

二级参考文献47

  • 1李为民,许金余.玄武岩纤维对混凝土的增强和增韧效应[J].硅酸盐学报,2008,36(4):476-481. 被引量:152
  • 2刘利先,吕龙,刘铮,王海莹.高温下及高温后混凝土的力学性能研究[J].建筑科学,2005,21(3):16-20. 被引量:28
  • 3Li Q M, Men H. About the dynamic strength enhancement of concrete-like materials in a split Hopkinson pressure bar test [ J]. Int J Solids Struct, 2003, 40: 343-360.
  • 4Davidovits J. Mineral polymers and methods of making them [P]. Patent US4349386, 1982.
  • 5Hardjito D, Wallah S E, Rangan B V. Research into engineering properties of geopolymer concrete [ A ]. Proceedings of the International Conference on Geopolymers [ C ], Melbourne, Australia, 2002. (CD-ROM).
  • 6Bakharev T. Geopolymeric materials prepared using Class F fly ash and elevated temperature curing [ J ]. Cement and Concrete Research, 2005, 35 : 1224-1232.
  • 7Pacheco-Torgal F, Castro-Gomes J P, Jalali S. Adhesion characterization of tungsten mine waste geopolymeric binder. Influence of OPC concrete substrate surface treatment [ J ]. Construction and Building Materials (2006), doi : 10. 1016/ j. conbuildmat. 2006.10. 005.
  • 8Hu S G, Wang H X, Zhang G Z, et al. Bonding and abrasion resistance of geopolymeric repair material made with steel slag [ J ]. Cement and concrete composites (2007), doi : 10. 1016/j. cemconcomp. 2007.04. 004.
  • 9Soft M, van Deventer J S J, Mendis P A, et al. Engineering properties of inorganic polymer concretes (IPCs) [ J ]. Cement and Concrete Research, 2007, 37:251-257.
  • 10Zhang Y S, Sun W, Li Z J, et al. Impact properties of geopolymer based extrudates incorporated with fly ash and PVA short fiber [ J ]. Construction and Building Materials ( 2006 ), doi : 10. 1016/j. conbuildmat. 2006.08. 006.

共引文献67

同被引文献95

引证文献7

二级引证文献27

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部