期刊文献+

石墨烯晶体管研究进展 被引量:4

Latest Advance of Researches on Graphene Transistors
下载PDF
导出
摘要 针对集成电路的特征尺寸小于10nm以下所面临的短沟道效应、隧道效应和制造工艺限制困难引发的研究热点——石墨烯能否替代硅,着重从数字晶体管、射频晶体管和柔性透明晶体管3个方面概括和分析了新型石墨烯晶体管的发展现状。分析认为:石墨烯平行纳米带阵列结构和异质结结构有望打开石墨烯禁带以实现大的电流开关比,将是石墨烯数字晶体管的研究热点;通过降低接触电阻、接入电阻以及衬底、栅介质的匹配来提高截止频率和最大振荡频率将是石墨烯射频晶体管的主要发展趋势;基于聚对苯二甲酸乙二醇酯(PET)衬底和离子凝胶栅介质的柔性制造技术,最有希望在保证石墨烯高迁移率的基础之上实现全石墨烯透明柔性电路,使石墨烯晶体管得以实用,必将对集成电路行业产生巨大影响。 According to the research hotspot arised by the difficulties that when the feature sizes of integrated circuits become less than 10 nm, the silicon ICs are unlikely stable due to the short channel effect, tunneling effect and manufacturing process limits, the latest advance of researches on graphene transistors are discussed from three aspects including digital transistors, radio frequency (RF) transistors and flexible transparent transistors. Graphene nanoribbons array parallel structure and heterogeneous structure are the most promising approaches on opening the graphene band gap to achieve a high on/off current ratio and to achieve complementary logic. The main development trend of graphene RF transistors is to improve the cut-off frequency and maximum oscillating frequency by reducing the contact resistance and access resistance, and matching the interface between substrate and gate dielectric. It is realized that the flexible manufacturing technology of Polythylene terephthalate (PET) substrate and Ion Gel gate dielectric are the most promising approaches to achieve a full graphene transparent flexible circuit and to keep graphene high mobility. Graphene transistors will have a huge impact on the integrated circuit industry.
出处 《西安交通大学学报》 EI CAS CSCD 北大核心 2014年第10期1-8,48,共9页 Journal of Xi'an Jiaotong University
基金 国家自然科学基金资助项目(91123018 61172041 61172040) 陕西省自然科学基金资助项目(2014JM7277)
关键词 石墨烯晶体管 禁带 截止频率 最大振荡频率 柔性晶体管 graphene transistors bandgap cutoff frequency maximum oscillation frequency flexibility transistors
  • 相关文献

参考文献34

  • 1IEONG M, DORIS B, KEDZI[JAKUB J, et al. Sili- con device scaling to the sub-10-nm regime [J]. Sci- ence, 2004, 306: 2057-2060.
  • 2PONOMARENKO L A, SCHEDIN F, KATSNEL- SON M I, et al. Chaotic dirac billiard in graphene quantum dots [J]. Science, 2008, 320: 356-358.
  • 3SCHWIERZ F. Graphene transistors [J]. Nature Nano- technology, 2010, 5: 487-496.
  • 4BALANDIN A A, GHOSH S, BAO W, et al. Superi- or thermal conductivity of single-layer graphene [J]. Nano Letters, 2008, 8(3): 902-907.
  • 5LI X, WANG X, ZHANG L, et al. Chemically de- rived, ultrasmooth graphene nanoribbon semiconduc- tors [J]. Science, 2008, 319: 1229-1231.
  • 6BAI J, ZHONG X, JIANG S, et al. Graphene na- nomesh [J]. Nature Nanotechnology, 2010, 5: 190- 194.
  • 7CAI J, RUFFIEUX P, JAAFARFAR R, et al. Atom- ically precise bottom-up fabrication of graphene nanor- ibbons [J]. Nature Letters, 2010, 466: 470-473.
  • 8ZENG Z, HUANG X, YIN Z, et al. Fabrication of graphene nanomesh by using an anodic aluminum oxide membrane as a template I J]. Advanced Materials, 2012, 24(30):4138-4142.
  • 9YANG Y, MURALI R. Impact of size effect on gra- phene nanoribbon transport [J]. IEEE Electron Device Letters, 31(3): 237-239.
  • 10MOON J S, SEO H, STRATAN F, et al. Lateral graphene heterostructure field-effect transistor [J]. IEEE Electron Device Letters, 2013, 34(9): 1190- 1192.

同被引文献24

  • 1牛蒙年.半导体场效应型气体传感器的研究现状与未来[J].传感器技术,1993(3):6-11. 被引量:2
  • 2PEREIRA V M,DOSSANTOS J M B L,NETO A C.Modeling disorder in graphene[J].Physical Review:B,2008,77(11):115109.
  • 3FASOLINO A,LOS J,KATSNELSON M I.Intrinsic ripples in graphene[J].Nature Materials,2007,6(11):858-861.
  • 4NAKADA K,FUJITA M,DRESSELHAUS G,et al.Edge state in graphene ribbons:nanometer size effect and edge shape dependence[J].Physical Review:B,1996,54(24):17954-17961.
  • 5HUANG B,LI Z,LIU Z,et al.Adsorption of gas molecules on graphene nanoribbons and its implication for nanoscale molecule sensor[J].The Journal of Physical Chemistry:C,2008,112(35):13442-13446.
  • 6LU G,OCOLA L E,CHEN J.Gas detection using low-temperature reduced graphene oxide sheets[J].Applied Physics Letters,2009,94(8):083111.
  • 7XUE Y Q,DATTA S,RATNER M A.First-principles based matrix Green's function approach to molecular electronic devices:general formalism[J].Chemical Physics,2002,281(2/3):151-170.
  • 8ATACA C,AKTURK E,爦AHIN H,et al.Adsorption of carbon adatoms to graphene and its nanoribbons[J].Journal of Applied Physics,2011,109(1):013704.
  • 9REICH S,MAULTZSCH J,THOMSEN C,et al.Tight-binding description of graphene[J].Physical Review:B,2002,66(3):035412.
  • 10IHNATSENKA S,KIRCZENOW G.Dirac point resonances due to atoms and molecules adsorbed on graphene and transport gaps and conductance quantization in graphene nanoribbons with covalently bonded adsorbates[J].Physical Review:B,2011,83(24):245442.

引证文献4

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部