期刊文献+

基于稀疏表示的人脸图像压缩方法 被引量:4

Facial Image Compression Based on Sparse Representations
下载PDF
导出
摘要 基于稀疏表示的人脸图像压缩算法首先对人脸图像进行分块,其次利用K-SVD字典学习算法,训练一个图像的冗余字典,最后用OMP算法对其进行稀疏编码,得到压缩的图像.由于OMP算法复杂度较高,为了降低复杂度,提高算法效率,提出了一种基于稀疏表示理论的新的人脸压缩算法.该算法在稀疏编码阶段,用基于块坐标松弛(Block Coordinate Relation)字典学习算法对人脸图像进行稀疏编码,最后用重构算法对压缩数据进行重构.通过实验仿真,与JPEG压缩方法及OMP算法比较,所提方法在同等压缩比下,重构的图像质量有所提高. The use of sparse representations in compressed facial images is common in recent years. Firstly, divide the facial image into fixed-size square patches. Secondly, use the K-SVD al- gorithm for training a redundant dictionary, and finally use sparse coding OMP algorithm to obtain a compressed image. The complexity of the OMP algorithm is rather high; in order to reduce it, and improve the efficiency of the algorithm, this paper proposes a new facial compression algorithm based on sparse representation theory. The algorithm uses the Block Coordinate Relaxation diction- ary learning algorithm for facial image sparse coding. And finally , the compressed data is recon- structed by the reconstruction algorithm. The simulation results show that the method has better image quality under similar compression ratio compared to the JPEG and OMP approaches.
出处 《北方工业大学学报》 2014年第3期6-10,61,共6页 Journal of North China University of Technology
基金 国家自然科学基金项目(No.61170327)
关键词 人脸压缩 稀疏表示 块坐标松弛 facial image compression sparse representation Block Coordinate Relaxation
  • 相关文献

参考文献1

二级参考文献1

共引文献69

同被引文献32

  • 1赵振勇,王保华,王力,崔磊.人脸图像的特征提取[J].计算机技术与发展,2007,17(5):221-224. 被引量:18
  • 2Wright J,Yang A Y, Ganesh A, et al. Robust face recognition via spare representation[J]. IEEE Transactions on Pattern A- nalysis and Machine Intelligence ,2010,31 (2) :210-227.
  • 3Gao S H, Tsang L W H, Chia L T. Kernel sparse representation for image classification and face recognition [ C ]//Proc of llth European conference on computer vision. Heraklion, Greece : [ s. n. ] ,2010 : 1-14.
  • 4Zhang L, Yang M, Feng X C. Sparse representation or collabo- rative representation: which helps face recognition? [ C ]// Proc of IEEE international conference on computer vision. Barcelona : IEEE ,2011:471-478.
  • 5Aharon M, Elad M, Bruckstein A. K-SVD:an algorithm for de- signing overcomplete dictionaries for sparse representation [ J ]. IEEE Trans on Signal Processing, 2006,54 ( 11 ) :4311 - 4322.
  • 6Zhang Q,Li B X. Discriminative KSVD for dictionary learning in face recognition[ C ]//Proe of the IEEE conference on com- puter vision and pattern recognition. San Francisco, USA: IEEE ,2010 :2691-2698.
  • 7Frigui H, Krishnapuram R. Clustering by competitive agglom- eration[ J ]. Pattern Recognition, 1997,30 (7) : 1109-1119.
  • 8Mallar S G,Zhang Z. Matching pursuits with time-frequency dictionaries [ J ]. IEEE Transactions on Signal Processing, 1993,41 (12) :3397-3415.
  • 9王李冬.一种新的人脸识别算法[J].计算机技术与发展,2009,19(5):147-149. 被引量:12
  • 10练秋生,陈书贞.基于混合基稀疏图像表示的压缩传感图像重构[J].自动化学报,2010,36(3):385-391. 被引量:28

引证文献4

二级引证文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部