期刊文献+

奇异超线性和次线性n阶m点边值问题的非平凡解

Nontrivial Solutions of Singular Superlinear and Sublinear n-order m-point Boundary Value Problems
下载PDF
导出
摘要 在相应线性算子第一特征值的条件下,讨论超线性和次线性n阶m点边值问题{u(n)(t)+a(t)f(u(t))=0,t∈(0,1)m-2,其中:n≥2,m≥2,0<η1<η2<…<u(0)=u'(0)=…=u(n-2)(0),u(1)=∑αiu(ηi)i=1m-2ηm-2<1,αi>0,(i=1,2,…,m-2)且∑αiηn-1i<1.在此允许a(x)在x=0和x=1奇异,f不i=1必是非负的.利用锥上的拓扑度理论获得非平凡解的存在性. In this paper, the singular supedinear and sublinear n-order m-point boundary value problem ({u(n)(t)+a(t)f(u(t))=0,t∈(0,1) u(0)=u'(0)=…=u(n-2)(0),u(1)=m-2∑i=1αiu(ηi)) is considered under some conditions concern n≥2,m≥2,0〈η1〈η2〈…〈ηm-2〈1,αi〉0,(i=1,2,…,m-2) and m-2∑αiηn-1i〈1 is allowed to be singular at x = 0 and x = 1 and f(x) is not necessary to be nonnegative. The existence results of nontrivial solutions and positive solutions are given by using the method of topological degree.
作者 谢静
出处 《沈阳化工大学学报》 CAS 2014年第3期273-278,288,共7页 Journal of Shenyang University of Chemical Technology
关键词 多点边值问题 非平凡解 拓扑度 multi-point boundary value problems nontrivial solutions topology degree cone
  • 相关文献

参考文献8

  • 1Cui Y J, Zou Y M. Nontrivial Solutions of Singular Superlinear m-point Boundary Value Problems[ J]. Applied Mathematics and Computation, 2007, 187 (2) :1256 - 1264.
  • 2Sun J X, Zhang G W. Nontrivial Solutions of Sin- gular Sublinear Sturm-Liouville Problem [ J ]. J Math Anal Appl,2007,326( 1 ) :242 -251.
  • 3Zhang G W, Sun J X. Nontrivial Solutions of Sin- gular Superlinear Sturm-Liouville Problem [ J ]. J Math Anal Appl,2006,313(2) :518 -536.
  • 4Pang C C, Dong W, Wei Z L. Green' s Function and Positive Solutions of nth Order m-point Bound- ary Value Problem [ J ]. Applied Mathematics and Computation,2006,182 ( 2 ) : 1231 - 1239.
  • 5Yang J B ,Wei Z L. Positive Solutions of nth Order m-point Boundary Value Problem [ J ]. Applied Mathematics and Computation, 2008,201 : 715 - 720.
  • 6Xian X. Positive Solutions for Singular Semi-posi- tion Three-point Systems [ J ]. Nonlinear Anal, 2007.66(4) :791 - 805.
  • 7郭大钧.非线性泛函分析[M].山东:科学技术出版社,2003:31-47.
  • 8刘小会.非线性半正(k,n-k)共轭边值问题的非平凡解[D].沈阳:东北大学理院,2008:3-20.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部