期刊文献+

ORP调控对葡萄糖和果糖混合底物丁醇发酵的影响

Butanol production from mixture of glucose and fructose with ORP control
下载PDF
导出
摘要 采用氧化还原电位(oxidoreduction potential,ORP)调控以模拟菊芋块茎酸解液(葡萄糖和果糖混合糖)为底物进行的丙酮丁醇发酵过程,能够有效控制"酸崩溃"现象的发生。已通过实验确定最佳调控策略为控制整个发酵过程的ORP不低于-460mV。本研究在最佳调控策略下,发酵终点丁醇浓度从3.39g/L提高到11.65g/L,残糖浓度从30.82g/L降低到1.38g/L。对比ORP调控组和对照组发现,ORP调控能够改变发酵过程中细胞内还原力水平,能量状态和代谢流向,因此ORP调控能有效防止"酸崩溃"现象发生,调节菌体生长和溶剂产量。ORP调控策略应用于以葡萄糖和果糖混合糖为底物的丁醇发酵具有操作可行性,是一种简便而有效的工艺优化手段。 The effects of oxidoreduction potential (ORP) control on batch acetone butanol ethanol (ABE) fermentation by Clostridium acetobutylicum L7 from the mixture of glucose and fructose to stimulate the hydrolysate of Jerusalem artichoke tuber were investigated.It was found that ORP control significantly contributed to the relief of ‘acid crash’ phenomenon existing in the uncontrolled fermentation process.ORP control could facilitate the transition from acidogenesis to solventogenesis effectively.Controlling ORP level above-460mV was proven to be the best ORP control strategy.Under this condition,butanol titer increased from 3.39g/L to 11.65g/L with residual sugars decreasing from 30.82g/L to 1.38g/L.Comparative analysis showed that under the optimized ORP control condition,the intracellular reducing equivalents,energy state and metabolic flux were significantly redistributed,which thus resulted in no ‘acid crash’ and enhanced cell growth as well as solvents titers.The optimized ORP control strategy was demonstrated to be cost effective.
出处 《化工进展》 EI CAS CSCD 北大核心 2014年第A01期243-250,共8页 Chemical Industry and Engineering Progress
基金 国家自然科学基金(21376044) 国家863计划(2011AA02A208 2012AA021205)项目
关键词 混合糖 丁醇发酵 丙酮丁醇梭菌 ORP调控 胞内代谢物 mixed sugars butanol fermentation Clostridium acetobutylicum ORP control intracellular metabolites
  • 相关文献

参考文献24

  • 1Du C, Yan H, Zhang Y, et a/. Use of oxidoreduction potential as an indicator to regulate 1, 3 propanediol fermentation by Kgebsiella pneumoniae [J]. Applied Microbiology and Biotechnology, 2006, 69 ( 5 ): 554- 563.
  • 2Sheu D C, Duan K J, Jou S R, et al. Production of xylitol from Candida tropicalis by using an oxidation-reduction potential-stat controlled fermentation [J]. Biotechnology Letters, 2003, 25 (24): 2065-2069.
  • 3Chen F, Feng X H, Liang J F, et al. An oxidoreduction potential shift control strategy for high purity propionic acid production by Propionibacterium freudenreichii CCTCC M207015 with glycerol as sole carbon source [J]. Bioprocess and Biosystems Engineering, 2013, 36 (9) : 1165-1176.
  • 4郑继岱,徐国谦,储炬,王永红,庄英萍,张嗣良.利用氧化还原电位调控乳酸发酵[J].生物加工过程,2008,6(5):73-77. 被引量:9
  • 5Wang S, Zhu Y, Zhang Y, et al. Controlling the oxidoreduction potential of the culture of Clostridium acetobutylicum leads to an earlier initiation of solventogenesis, thus increasing solvent productivity [J]. Applied Microbiology and Biotechnology , 2012, 93 (3) :1021-1030.
  • 6Ishizaki A, Shibai H, Hirose Y. Basic aspects of electrode potential change in submerged fermentation [J]. Agricultural and Biological Chemistry, 1974, 38: 2399- 2405.
  • 7Li J, Jiang M, Chen K Q, et al. Effect of redox potential regulation on succinic acid production by Actinobacillus succinogenes [J]. Bioprocess and Biosystems Engineering, 2010, 33 (8): 911-920.
  • 8De Grad M R, Alexeeva S, Snoep d L, et al. The steady- state internal redox state (NADH/NAD) reflects the external redox state and is correlated with catabolic adaptation in Escherichia coli [J]. Journal of Bacteriology, 1999, 181 (8): 2351-2357.
  • 9Elliott S J, Lger C, Pershad H R, et al. Detection and interpretation of redox potential optima in the catalytic activity of enzymes [J]. Biochimica et Biophysica Acta (BBA): Bioenergetics, 2002, 1555 (1): 54-59.
  • 10Margaritis A, Bajpai P, Cannell E. Optimization studies for the bioconversion of Jerusalem artichoke tubers to ethanol and microbial biomass [J]. Biotechnology Letters, 1981, 3 (10): 595-599.

二级参考文献68

  • 1罗鑫鹏,陈丽杰,汪芳,白凤武.稀释速率对高浓度酒精连续发酵过程振荡行为的影响[J].生物工程学报,2005,21(4):604-608. 被引量:6
  • 2隆小华,刘兆普,王琳,蒋云芳.半干旱地区海涂海水灌溉对不同品系菊芋产量构成及离子分布的影响[J].土壤学报,2007,44(2):300-306. 被引量:20
  • 3杨蕾,陈丽杰,白凤武.高浓度酒精连续发酵过程中振荡行为的模拟及填料弱化振荡的机理[J].化工学报,2007,58(3):715-721. 被引量:10
  • 4Bai F W, Chen L J, Anderson W A, Moo-Young M. Parameter oscillations in a very high gravity medium continuous ethanol fermentation and their attenuation on a multistage packed column bioreactor system. Biotechnol. Bioeng., 2004, 88:558-566.
  • 5Xu T J, Zhao X Q, Bai F W. Continuous ethanol production using self-flocculating yeast in a cascade of fermentors. EnzymeMicrobiol. Technol. , 2005, 37: 634- 640.
  • 6Wittmann C, Hans M A, van Winden W A, Ras C, Heijnen J J. Dynamics of intracellular metabolites of glycolysis and TCA cycle during celPcycle-related oscillation in Saccharomyces cerevisiae. Biotechnol. Bioeng. , 2005, 89:839-847.
  • 7Pratap R Patnaik. Oscillatory metabolism of Saccharomyces cerevisiae: an overview of mechanisms and models. Biotechnol. Adv., 2003, 21:183-192.
  • 8Murray D B, Beckmann M, Kitano H. Regulation of yeast oscillatory dynamics. PNAS, 2007, 104: 2241 -2246.
  • 9Zeng A P, Menzel K, Deckwer W D. Kinetic, dynamic, and pathway studies of glycerol metabolism by Klebsiella pneumoniae in anaerobic continuous culture ( II ) : Analysis of metabolic rates and pathway under oscillation and steadystate conditions. Biotechnol. Bioeng., 1996, 52 (5): 561-571.
  • 10Rasch M, Barker G C, Sachau K, Jakobsen M, Arneborg N. Characterization and modeling of oscillatory behavior related to reuterin production by Lactobacillus reuteri. Int. J. FoodMicrobiol., 2002, 73 (2/3): 383 -394.

共引文献45

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部