期刊文献+

一类0-1背包问题的启发式网络策略模型与算法

A Heuristic Network Strategy Model and Algorithm to the 0-1 Knapsack Problem
下载PDF
导出
摘要 针对遗传算法(GA)易陷入局部最优解、搜索精度低等缺点,提出了网络启发式策略的遗传算法(NSHGA),并将其成功地应用于0-1背包问题的求解。该算法采用网络节点关联策略,使算法具有良好的全局寻优能力。同时引入网络节点矩阵优化,利用其精细的局部遍历搜索性能,使算法具有较高地搜索精度。实例仿真结果表明,NSHGA算法可有效避免基本GA算法的早熟收敛,且具有寻优能力强、搜索精度高等特点。此外,与基本遗传算法仿真相比,可明显提高0-1背包问题求解的精度。 In order to overcome GA’s disadvantages that it can be easily trapped into local optimization and has low accuracy of search,a network strategy heuristic genetic optimization algorithm has been proposed,and the algorithm has been successfully applied to solving the 0-1 knapsack problem. In this algorithm,the strategy of network node correlation is introduced to improve the global optimizing capability. This paper also introduces network node matrix optimization and uses its thorough local traversal search to improve the solution accuracy. The simulation results show that NSHGA can not only avoid premature effectively,but also has powerful optimizing ability and high optimizing precision. Compared with basic genetic algorithm simulation,NSHGA can obviously improve the accuracy of the solution to the 0-1 knapsack problem.
作者 夏倩 张晓龙
出处 《电子科技》 2014年第10期71-75,共5页 Electronic Science and Technology
关键词 遗传算法 启发式网络策略 0-1背包问题 节点矩阵 genetic algorithm heuristic network strategy 0-1 knapsack problem joint matrix
  • 相关文献

参考文献16

  • 1MARTELLO S,TOTH P. An upper bound of Zero - one knap- sack problem and a branch and bound algorithm [ J ]. Europe- an Journal of Operational Research, 1977,1 (3) : 169 - 175.
  • 2ZOU Dexuan, GAO Liqun, LI Steven, et al. Solving 0 - 1 knap- sack problem by a novel global harmony search algorithm [ J ]. Applied Soft Computing, 2011,11 (2) : 1556 - 1564.
  • 3TUNG Khactruong, LI Kenli, XU Yuming. Chemical reaction optimization with greedy strategy for the 0 - 1 knapsack prob- lem [ J ]. Applied Soft Computing,2013,13 (4) : 1774 - 1780.
  • 4BALAS E,ZEMEL E. An algorithm of large zero-one knapsack problems [ J ]. Operation Researeh, 1980,16 ( 1 ) : 196 - 200.
  • 5ZHANG Xiaoge, HUANG Shiyan, HU Yong, et al. Solving 0- 1 knapsack problems based on amoeboid organism algo- rithm [ J ]. Applied Mathematics and Computation, 2013,219 (19) :9959 - 9970.
  • 6RAJA B S, KANNAN K. A new polynomial time algorithm for 0- 1 multiple knapsack problem based on dominant princi- ples [J]. Applied Mathematics and Computation, 2008,20 (11) :71 -77.
  • 7YANG Zhen, WANG Guoqing, CHU Feng. An effective GRASP and tabu search for the 0 - 1 quadratic knapsack problem [ J]. Computers & Operations Research, 2013,40 (5) :1176 - 1185.
  • 8LUCAS LITOCART,ANASS NAGIH, GIRARD PLATEAU. Reoptimization in Lagrangian methods for the 0 - 1 quadratic knapsack problem [ J]. Computers & Operations Research, 2012,39( 1 ) : 12 - 18.
  • 9RAJEEV K, SINGH P K. Assessing solution quality of biob- jective 0 - 1 knapsack problem using evolutionary and heu- ristic algorithms [ J]. Applied Soft Computing,2010,10( 3 ) : 711 -718.
  • 10JULIEN R,JOSI RUI FIGUEIRA,YVES D S. The inverse 0-1 knapsack problem :Theory ,algorithms and computational experi- ments [J]. Discrete Optimization,2013,10(2) : 181 - 192.

二级参考文献40

共引文献96

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部