期刊文献+

先行指标与宏观经济波动预测 被引量:3

Leading indicators and macroeconomic fluctuation forecasting
原文传递
导出
摘要 文中基于非参数协整检验,建立了基于先行指标预测我国经济短期波动的平滑转换自回归模型,以考察不同先行指标对短期内宏观经济波动的预测能力.结果显示:经济合作与发展组织(OECD)先行指标对季节调整后实际产出水平的预测误差基本在1%以内,国家统计局先行指标对国内生产总值(GDP)同比增长率的预测误差基本在5%以内.对2011年第2季度后GDP增长的样本外预测结果表明,两种先行指标的预测结果都与实际GDP增长率很接近,OECD指标的预测精度略优于国家统计局指标. Based on the nonparametric cointegration test, this paper develops the smooth transition autoregression (STAR) model to forecast the short-run macroeconomic fluctuations using the leading indicators. It is found that the prediction error of actual output levels provided by Organization for Economic Co-operation and Development (OECD)'s leading indicators after the seasonally adjusted is within 1%, and the prediction error of year-on-year growth rate of Gross Domestic Product (GDP) provided by National Bureau of Statics of China (NBSC) is less than 5%. Forecasting result of GDP growth in 2011 showed that the forecasting results of two leading indicators are very close to the real GDP growth rate, and leading indicator provided by OECD is prior to that provided by NBSC.
作者 花俊国
出处 《系统工程理论与实践》 EI CSSCI CSCD 北大核心 2014年第10期2539-2545,共7页 Systems Engineering-Theory & Practice
关键词 先行指标 经济波动 平滑转换自回归 非参数协整检验 leading indicator macroeconomic fluctuations smooth transition autoregression nonparametric cointegration test
  • 相关文献

参考文献11

  • 1Auerbach A. The index of leading indicators: "measurement without theory," thirty-five years later[J]. Review of Economics and Statistics, 1982, 69(4): 589 595.
  • 2Diebold F, Rudebusch A. Forecasting output with the composite leading index: A real-time analysis[J]. Journal of the American Statistical Association, 1991, 86(415): 603-610.
  • 3Diebold F, Rudebusch A. Measuring business cycles: A modern perspective[J]. Review of Economics and Statis- tics, 1995, 78(1): 67-77.
  • 4Kim C, Murray C. Permanent and transitory components of recessions[J]. Empirical Economics, 2002, 27(2): 163-183.
  • 5Chauvet M. An econometric characterization of business dynamics with factor structure and regime switching[J]. International Economic Review, 1998, 39(4): 969-996.
  • 6Camacho M. Vector smooth transition regression models for US GDP and the composite index of leading indi- cators[J]. Journal of Forecasting, 2004, 23(3): 173-196.
  • 7Ocal N. Nonlinear models composite longer leading indicator and forecasts for UK real GDP[J]. Applied Eco- nomics, 2006, 38(9): 1049-1053.
  • 8Tersvirta T, Anderson H M. Characterizing nonlinearities in business cycles using smooth transition autore- gressive models[J]. Journal of Applied Econometrics, 1992, 7(Suppl): 119-136.
  • 9Tersvirta T. Specification, estimation and evaluation of smooth transition autoregressive models[J]. Journal of the American Statistical Association, 1994, 89(425): 208- 218.
  • 10Bierens H J. Nonparametric cointegration analysis[J]. Journal of Econometrics, 1997, 77(2): 379-404.

同被引文献29

引证文献3

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部