期刊文献+

基于无线传感器网络的河流中稳态扩散污染源定位研究 被引量:1

The Localization of Pollution Source in Steady Diffusion State in River Based on Wireless Sensor Networks
下载PDF
导出
摘要 针对河流中污染源定位问题,首先分析了河流污染源扩散模型,给出了一种处理完全吸收边界,不完全反射边界以及完全反射边界的通用河流污染源稳态扩散模型。改进了在边界约束下以测量值与理论值之差的平方和为目标的非线性最小二乘算法,并提出了一种新的最小二乘污染源定位算法。该算法弥补了直接非线性最小二乘算法在数值计算过程中稳定性较差的缺点。最后,仿真研究了浓度测量噪声,节点漂移误差和反射系数误差对定位性能的影响。仿真结果表明:已知信息的误差越大,则定位均方根误差越大;传感器节点个数越多,估计精度越高,但当节点增加到一定数量时,继续增加节点对定位精度的影响会减小。另外,仿真结果验证了非线性最小二乘算法的优越性,说明了算法在河流污染源定位应用中的有效性。 To solve the localization problem of the pollution source in river,the diffusion process is analyzed first. In steady diffusion state,a general diffusion model is proposed,which can apply to the diffusion process with complete absorption boundary,perfect reflection boundary and imperfect reflection boundary,respectively. A nonlinear least square based localization method is improved with the boundary constrain and the target of minimizing the sum of the square of the differences between the estimation and the measurement of the concentration computing. Then,to improve the numerical stability and robustness,a new objective function of localization is proposed. Simulations are conducted to the localization performances under different levels of measurement noise,node position drift and re ̄flection coefficient uncertainties. The simulation results show that the more the related information error is,the larger the root mean square error of the position estimation is,and that the more sensor nodes are,the higher the accurate of position estimation is. However,when the number of nodes is up to a certain value,the localization accuracy is improved hardly. The results validate the superiority of the improved nonlinear least square method and its efficiency in the application of the localization of pollution source in river.
出处 《传感技术学报》 CAS CSCD 北大核心 2014年第10期1423-1430,共8页 Chinese Journal of Sensors and Actuators
基金 国家自然科学基金项目(61171160 61463053) 湖北省高等学校优秀中青年科技创新团队计划项目(T201302)
关键词 无线传感器网络 非线性最小二乘 污染源定位 水环境污染源 wireless sensor network nonlinear least squares the localization of pollution source pollution source in water
  • 相关文献

参考文献20

  • 1Akyildiz I.Su W.Sankarasubramaniam Y.at el. A Survey on SensorNetworks[J]. IEEE Communications Magazine.2002.8(40):102-114.
  • 2Michaelides M P.Panayiotou C G. Plume Source Position EstimationUsing Sensor Networks[C] / / Proceedings of the 13th MediterraneanConference on Control and Automation.Limassol Cyprus.2005:731-736.
  • 3Zhao T.Nehorai A. Distributed Sequential Bayesian Estimation of aDiffusive Source in Wireless Sensor Networks[J]. IEEE Trans.Signal Processing.2007.55:1511-1524.
  • 4张勇,孟庆浩,吴玉秀,曾明.一种基于分布式最小均方差序贯估计的气体泄漏源定位算法[J].传感技术学报,2014,27(1):128-134. 被引量:4
  • 5Samire S S.Seddik M D.Qi H R. Source Localization Using Stochastic Approximation and Least Squares Methods[C] / / AIP Conference Proceedings.2009:59-64.
  • 6Pinto D.Viana S S.Nacif J A M.et al. HydroNode:A Low Cost.Energy Efficient. Multipurpose Node for Underwater SensorNetworks[C] / / IEEE 37th Conference on Local Computer Networks.2012:22,25.148-151.
  • 7Hunt K P. Niemeier J J. Kruger A. Short Paper: Antennas forMusselBased Underwater Biological Sensor Networks in Rivers[C] / / The Fifth ACM International Workshop on under Water Networks(WUWNet’10).2010.
  • 8John H.Milica S.Michele Z. Underwater Sensor Networks:Applications.Advances and Challenges[J]. Phil Trans R Soc.2012.370:158-175.
  • 9O’Connor E.Smeaton A F.O’Connor N E.et al. A Neural NetworkApproach to Smarter Sensor Networks for Water Quality Monitoring[J]. Sensors 2012.2012:4605-4632.
  • 10蒋鹏.基于无线传感器网络的湿地水环境远程实时监测系统关键技术研究[J].传感技术学报,2007,20(1):183-186. 被引量:52

二级参考文献88

共引文献85

同被引文献2

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部