期刊文献+

分布式压缩感知视频编码中CS帧的二次修正准则研究

The Study of CS Frames' s Second Correlation Rule of Distributed Video Compression Coding
下载PDF
导出
摘要 分布式视频编码是新的视频编码体系,与传统的视频编码体系相比,具有编码端相对简单、解码端相对复杂的特点。此外,压缩感知突破了奈奎斯特采样定理,降低了信号的采样率。将压缩感知理论应与分布式视频编码相结合,使编码端复杂度降低。在一些分布式压缩视频编码研究中,CS帧是由边信息和发送端传送的信息联合重建的,由于不同CS帧的边信息的预测准确度不同,导致不同CS帧恢复质量相差较大。为了解决这个问题,本文对CS帧的二次修正准则的进行研究,首先从理论上推导出方差作为修正准则的可行性,并在实验中加以验证。实验可知,本文提出的方法在一定程度上改善了这些帧的重建质量。 Distributed video coding is a new video coding system. It has a simpler coding and more complex decoding compared with the traditional video coding system. In addition, the compressed sensing breaks the Nyquist sampling theorem reducing the sampling rate of the signal. Combining the compressed sensing theory and distributed video coding reduce the complexity of the coding. In some study of the distributed compressed video coding, the CS frames are reconstructed with the help of the side information. Due to the different accuracy estimation of the CS frames, the reconstructed CS frames have different quality. This paper studies the criteria of secondary correction of CS frames to solve this problem. Firstly, this paper study the feasibility of the variance criteria and proof it in experiences. The Experiment shows that the variance criteria improves the reconstructed quality of CS frames.
出处 《信号处理》 CSCD 北大核心 2014年第9期1098-1103,共6页 Journal of Signal Processing
基金 国家自然科学基金项目(61271240)资助课题
关键词 分布式压缩视频编码 稀疏度 边信息 方差 distributed compression video coding sparsity side information CS frames' s second correlation
  • 相关文献

参考文献10

  • 1Donoho D L. Compressed sensing[ J ]. Information Theo- ry, IEEE Transactions on, 2006, 52(4): 1289-1306.
  • 2Candes E J,Romberg J,Tao T. Robust uncertainty princi- ples: Exact signal reconstruction from highly incomplete frequency information [ J ]. Information Theory, IEEE Transaction on, 2006,52 (2) : 489-509.
  • 3Candes E J. Compressive sampling [ C ]//Proeeedings oh the International Congress of Mathematicians: Madrid, August 22-30, 2006: invited lectures. 2006: 1433-1452.
  • 4Kang L W, Lu C S, Distributed compressive video sens- ing [ C ] // Acoustics, Speech and Signal Processing, 2009. ICASSP 2009. IEEE International Conference on. IEEE, 2009: 1169-1172.
  • 5Figueiredo M A T, Nowak R D, Wright S J. Gradient projection for sparse reconstruction : Application to com- pressed and other inverse problems [ J ]. Selected Topics in signal Processing, IEEE Journal of, 2007, 1 (4): 586-589.
  • 6Gan L, Do T, Tran T D. Fast compressive imaging using scrambled hadamard ensemble[J]. Preprint, 2008.
  • 7Do T T, Chen Y, Nguyen D T, et al. Distributed com- pressed video sensing [ C ] //Image Processing (ICIP), 2009 16th IEEE International Conference on IEEE, 2009 : 1393-1396.
  • 8Baig Y, Lai E M K, Areal P. Low complexity side infor- mation for distributed compressed video coding[ C ]//Sig- nal Processing, Communication and Computing (IC- SPCC), 2012 IEEE International Conference on. IEEE, 2012 : 436-441.
  • 9Hao X R, Zhuang B J, Cai A N. Measurement compres- sion in distributed compressive video sensing [ C ] // Broadband Network and Multimedia Technology (IC-BN- MT), 2010 3rd IEEE International Conference on. IEEE, 2010: 850-854.
  • 10Baig Y, Lai E M, Amal P. Low complexity side informa- tion for distributed compressed video coding[ C ]//Signal Processing, Communicalinn and Computing (ICSPCC), 2012 IEEE International Conference on. IEEE, 2012: 436-441.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部