期刊文献+

使用方向参数的双三次图像内插方法

A Method of Bicubic Image Interpolation with Direction Parameter
下载PDF
导出
摘要 传统的双三次内插方法仅在水平和垂直方向估计丢失的像素,易在边缘或纹理区域产生抖动、振铃等现象。为了克服这种现象,提出一种新的使用方向参数的双三次图像内插方法。对待内插的像素,首先在其邻域计算水平、垂直、45°和135°四个方向的梯度,以提取图像局部边缘的强度和方向。对强边缘上的像素,直接沿边缘方向采用对应方向的双三次内插模型估计像素值;否则,先分别沿梯度较大的两个方向采用相应方向的双三次内插模型估计像素,然后采用适当的权系数对所得结果加权平均。此外,为减小计算复杂度,方法中还根据图像局部方差的大小,动态使用双线性内插方法。相比于双三次内插,提出的方法能有效地保存图像边缘和细节;同时,提出的方法还能够实现任意倍数的放大。实验结果表明,与现有的边缘导向的图像内插方法相比,提出的方法具有更好的主观和客观效果,同时计算复杂度并不高。 Traditional bicubic interpolation only interpolates missing pixels in horizontal or vertical directions and incurs blurring, ringing artifacts along edges or textures easily. Aiming at this problem, a method of bicubic image interpolation with direction parameter is proposed. This method detects local directions and strengths by means of computing gradients along horizontal, vertical, 45° and 135 ° in the first. If pixels are on strong edges, 1 D bicubic interpolation with corresponding direction is used directly. Otherwise, first interpolate along two directions with the biggest gradients respectively and then combine them with appropriate weights. Besides, in order to decrease computational complexity, bilinear interpolation is used dramatically based on local variance in this paper. Compared with bicubic method, the proposed method preserves sharp edges and details better and can accommodate arbitrary scaling factors as well. Experiments show that the proposed method is better than modem edge-directed interpolations in terms of subjective (such as PSNR) and objective (such as SSIM) measures, and the computational complexity is also relatively low.
出处 《信号处理》 CSCD 北大核心 2014年第10期1204-1212,共9页 Journal of Signal Processing
基金 国家自然科学基金(61071091 61071166 61172118)资助项目 "信息与通信工程"江苏高校优势学科建设工程资助项目 江苏省自然科学基金青年基金(BK20130867) 江苏省高校自然科学研究项目(12KJB510019)
关键词 双三次内插 局部梯度 方向参数 边缘强度 任意倍数放大 bicubic local gradients direction parameter edge strength arbitrary scaling factors
  • 相关文献

参考文献11

  • 1潘宗序,黄慧娟,禹晶,胡少兴,张爱武,马洪兵,孙卫东.基于压缩感知与结构自相似性的遥感图像超分辨率方法[J].信号处理,2012,28(6):859-872. 被引量:7
  • 2Li H,Xiong H,Qian L.Image super-resolution with sparse representation prior on primitive patches[C]//Visual Communications and Image Processing 2010.International Society for Optics and Photonics,2010:774422-774422-10.
  • 3Zhang J,Zhao C,Xiong R,et al.Image super-resolution via dual-dictionary learning and sparse representation[C]// Circuits and Systems (ISCAS),2012 IEEE International Symposium on.IEEE,2012:1688-1691.
  • 4Keys R.Cubic convolution interpolation for digital image processing[J].Acoustics,Speech and Signal Processing,IEEE Transactions on,1981,29(6):1153-1160.
  • 5Mallat S,Yu G.Super-resolution with sparse mixing estimators[J].Image Processing,IEEE Transactions on,2010,19(11):2889-2900.
  • 6Dong W,Zhang L,Lukac R,et al.Sparse representation based image interpolation with nonlocal autoregressive modeling[J].Image Processing,IEEE Transactions on,2013,22(4):1382-1394.
  • 7Li X,Orchard M T.New edge-directed interpolation[J].Image Processing,IEEE Transactions on,2001,10(10):1521-1527.
  • 8Yang B,Gao Z,Zhang X.Principal Components Analysis-Based Edge-Directed Image Interpolation[C]//Multimedia and Expo (ICME),2012 IEEE International Conference on.IEEE,2012:580-585.
  • 9Zhou D,Shen X,Dong W.Image zooming using directional cubic convolution interpolation[J].Image Processing,IET,2012,6(6):627-634.
  • 10Wang Z,Bovik A C,Sheikh H R,et al.Image quality assessment:from error visibility to structural similarity[J].Image Processing,IEEE Transactions on,2004,13 (4):600-612.

二级参考文献35

  • 1Park S C, Park M K, Kang M G. Super-resolution image reconstruction: A technical overview [ J ]. IEEE Signal Processing Magazine. 2003,20 (3) : 21-36.
  • 2Clark J J, Palmer M R, Lawrence P D. A transformation method for the reconstruction of functions from nonuniform- ly spaced samples [ J ]. IEEE Transactions on Acoustics, Speech and Signal Processing. 1985,33 (5) : 1151-1165.
  • 3Irani M, Peleg S. Motion analysis for image enhance- ment : resolution, occlusion, and transparency [ J ]. Jour- nal of Visual Communication and Image Representation. 1993,4(4) :324-335.
  • 4Kim S P, Bose N K, Valenzuela I-I M. Recursive recon- struction of high resolution image from noisy undersampled muhiframes [ J ]. IEEE Transactions on Acoustics, Speech, and Signal Processing. 1990,38 (6) : 1013-1027.
  • 5Stark H, Oskoui P. High-resolution image recovery from image-plane arrays, using convex projections[ J]. Journal of the Optical Society of America A (Optics and Image Science). 1989,6( 11 ) :1715-1726.
  • 6Banham M R, Katsaggelos A K. Digital image restoration [J]. IEEE Signal Processing Magazine. 1997,14(2) :24- 41.
  • 7Schultz R R, Stevenson R L. A Bayesian approach to im- age expansion for improved definition[ J]. IEEE Transac- tions on Image Processing. 1994,3 ( 3 ) :233-242.
  • 8Li X, Orchard M T. New edge-directed interpolation [ J J. IEEE Transactions on Image Processing. 2001,10 (10) : 1521-1527.
  • 9Muresan D D, Parks T W. Adaptively quadratic (AQua) image interpolation[ J]. IEEE Transactions on Image Pro- cessing. 2004,13 (5) :690- 698.
  • 10Zhang L, Wu X. An edge-guided image interpolation algo- rithm via directional filtering and data fusion [ J ]. IEEE Transactions on Image Processing. 2006,15 (8) :2?,26-2238.

共引文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部