摘要
本文针对混有高斯白噪声的正弦信号,提出了扩展自相关的频率估计算法。论文通过理论分析,充分挖掘自相关函数包含的频率信息,推导出新的扩展自相关函数;同时,在Yan算法的基础上对频率估计式加以改进。仿真结果表明,与现有频率估计算法相比,在信号序列较短或信噪比较低时,本文算法的估计方差更接近克拉美罗下界(CRLB);与Yan算法相比,在序列较大或信噪比较高时,在相同估计方差下,本文算法的计算量更小。
A carrier frequency estimation algorithm based on the expanded autocorrelation in additive white Gaussian noise was proposed, Through theoretical analysis, the algorithm fully excavates frequency information contained by the autocorrelation function and derives a new expanded autocorrelation and improves the frequency estimation formula based on the Yan algorithm. Compared with the existing algorithm, Numerical simulations indicate the estimation variance of the proposed algorithm is more close to the Cramer-Rao low bound (CRLB) when the sequence length is small or the SNR is low. and the calculation amount is smaller under the same estimate variance compared with the Yah algorithm when the sequence length is large or the SNR is sufficient.
出处
《信号处理》
CSCD
北大核心
2014年第10期1229-1233,共5页
Journal of Signal Processing
关键词
扩展自相关函数
频率估计
均方误差
克拉美罗下界
正弦信号
expanded autocorrelation
frequency estimation
mean square error
Cramer-Rao low bound
sinusoid