期刊文献+

基于自适应进化学习的约束多目标粒子群优化算法 被引量:14

Constrained multi-objective particle swarm optimization algorithm based on self-adaptive evolutionary learning
原文传递
导出
摘要 针对约束边界粒子在边界区域搜索能力不足的问题,提出一种基于自适应进化学习的约束多目标粒子群优化算法.该算法根据不符合约束条件粒子的约束违反程度,修正优化算法的进化学习公式,提高算法在约束边界区域的搜索能力;通过引入一种基于拥挤距离的Pareto最优解分布性动态维护策略,在不增加算法复杂度的前提下改进Pareto前沿的分布性.实验结果表明,所提出的算法可以获得具有更好收敛性、分布性和多样性的Pareto前沿. Considering the problem of the inadequate search ability for constraint boundary particles in the boundary region, a constrained multi-objective particle swarm optimization algorithm based on self-adaptive evolutionary learning is presented. The evolutionary learning formulas of multi-objective particle swarm optimization algorithm are modified according to the constraint violation level of infeasible particles, so that the algorithm's search ability is enhanced greatly in the constraint boundary region. Furthermore, a dynamic distribution maintenance strategy for Pareto front based on the crowding distance is adopted to improve the distribution of Pareto front without any increase in the algorithm's complexity. The experimental results show that the Pareto front obtained by the proposed algorithm has better convergence, distribution and diversity.
出处 《控制与决策》 EI CSCD 北大核心 2014年第10期1765-1770,共6页 Control and Decision
基金 国家自然科学基金项目(61240047)
关键词 多目标粒子群优化 自适应进化学习 拥挤距离 multi-objective particle swarm optimization self-adaptive evolutionary learning crowding distance
  • 相关文献

参考文献14

  • 1Li X, Du G. BSTBGA: A hybrid genetic algorithm for constrained multi-objective optimization problems[J]. Computers & Operations Research, 2013, 40(1): 282- 302.
  • 2Singh H K, Ray T, Smith W. C-PSA: Constrained Pareto simulated annealing for constrained multi-objective optimization[J]. Information Sciences, 2010, 180(13): 2499- 2513.
  • 3郭俊,桂卫华,陈晓方.基于粗糙集理论与差分进化的混合多目标优化算法[J].控制与决策,2013,28(5):736-740. 被引量:4
  • 4Homaifar A, Qi C X, Lai S H. Constrained optimization via genetic algorithms[J]. Simulation, 1994, 62(4): 242-253.
  • 5Li L D, Li X D, Yu X H. Power generation loading optimization using a multi-objective constraint-handling method via PSO algorithm[C]. The IEEE Int Conf on Industry Informatics. Korea, 2008: 1632-1637.
  • 6Deb K, Pratap A, Agarwal S, et al. A fast and elitist multiobjective genetic algorithm: NSGA-II[J]. IEEE Trans on Evolutionary Computation, 2002, 6(2): 182-197.
  • 7Kennedy J, Eberhart R. Particle swarm optimization[C]. IEEE Int Conf on Neural Networks. Australia, 1995, 4: 1942-1948.
  • 8张勇,巩敦卫,任永强,张建化.用于约束优化的简洁多目标微粒群优化算法[J].电子学报,2011,39(6):1436-1440. 被引量:21
  • 9He Q, Wang L. A hybrid particle swarm optimization with a feasibility-based rule for constrained optimization[J]. Applied Mathematics and Computation, 2007, 186(2): 1407-1422.
  • 10Li L D, Yu X H, Li X D, et al. A modified PSO algorithm for constrained multi-objective optimization[C]. The 3rd Int Conf on Network and System Security. Australia, 2009: 462-467.

二级参考文献61

  • 1张利彪,周春光,马铭,刘小华.基于粒子群算法求解多目标优化问题[J].计算机研究与发展,2004,41(7):1286-1291. 被引量:225
  • 2李爱国.多粒子群协同优化算法[J].复旦学报(自然科学版),2004,43(5):923-925. 被引量:398
  • 3王小刚,梁仕贤,王福利.加入局部搜索的非劣分层多目标遗传算法[J].东北大学学报(自然科学版),2007,28(7):921-924. 被引量:4
  • 4Kennedy J, Eberhart R C. Particle swarm optimization[ A]. Pro- ceedings of IEEE International Conference on Neural Networks [C]. NJ: 1EEE Piscataway, 1995. 1942 - 1948.
  • 5Coello Coello C A,Pulido G T, Lechuga M S. Handling mul- tiple objectives with particle swarm optimization [J]. IEEE Transactions on Evolutionary Computation, 2004,8 (3) : 256 - 279.
  • 6Tsai S J, Sun T Y, et al. An improved multi-objective particle swarm optimizer for multi-objective problems[J]. Expert Sys- tems with Applications, 2010,37 (8) : 5872 - 5886.
  • 7Wang Y J, Yang Y P.Particle swarm optimization with prefer- ence order ranking for multi-objective optimization[J]. Infor- rnation Sciences, 2009,179 (12) : 1944 - 1959.
  • 8Sift Y H, Eberbart R C. A modified particle swarm optimizer [A]. Proceedings of the IF, RE International Conference on Evo- lutionary Computation[ C]. NJ: 1F, F,F, Piscataway, 1998.63 - 79.
  • 9Leong W F. Multiobjective Paricle Swarm Optimization: Inte- gration of Dynamic Population and Multiple-swarm Concepts and Constraint Handing [ D ]. Stillwater: Oklahoma State Uni- versity, 2008.
  • 10Deb K, Pratap A, Agarwal S, Meyarivan T. A fast and elitist multiobjective genetic algorithm: NSGA-[J]. 1EEE Transac- tions on Evolutionary Computatiorks, 2002,6 (2) : 182 - 197.

共引文献57

同被引文献155

引证文献14

二级引证文献96

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部