期刊文献+

面向新异检测的启发式约减支持向量数据描述 被引量:3

Heuristic reduction support vector data description for novelty detection
原文传递
导出
摘要 针对支持向量数据描述(SVDD)单类分类方法运算复杂度高的缺点,提出一种启发式约减支持向量数据描述(HR-SVDD)方法.以启发的方式从原有训练集中筛选出部分样本构成约减训练集,对约减训练集进行二次规划解算,得到支持向量和决策边界.通过不同宽度系数高斯核SVDD特征的讨论,证明了HR-SVDD的有效性.人工数据集和真实数据集上的实验结果表明,HR-SVDD分类精度与传统支持向量数据描述相当,但具有更快的运算速度和更小的内存占用. A method of heuristic reduction support vector data description(HR-SVDD) is proposed for speeding up the support vector data description(SVDD) one-class classification method. The HR-SVDD first builds a reduced training set by selecting a portion of samples from training set in heuristic, and then completes the quadratic programming using the reduced training set rather than the original training set. The efficiency of proposed method is demonstrated by discussing characteristic of Gaussian kernel SVDD with different width parameters. For demonstration, experiments on artificial and real-world datasets are conducted, and the results show that the classification accuracy of HR-SVDD is nearly identical to that of conventional SVDD, but with faster running speed and less memory usage.
出处 《控制与决策》 EI CSCD 北大核心 2014年第10期1783-1787,共5页 Control and Decision
关键词 支持向量数据描述 启发式约减支持向量数据描述 新异检测 support vector data descriptiom heuristic reduction support vector data description: novelty detection
  • 相关文献

参考文献16

  • 1Moya M, Hush D. Network constraints and multi- objective optimization for one-class classification[J]. Neural Networks, 1996, 9(3): 463-474.
  • 2Tax D M J, Duin R P. Support vector domain description[J]. Pattern Recognition Letters, 1999, 20(11): 1191-1199.
  • 3Tax D M J. One class classification: Concept-learning in the absence of counter-examples[D]. Netherlands: University of Delft, 2001.
  • 4Wang S, Yu J, Lapira E, et al. A modified support vector data description based novelty detection approach formachinery components[J]. Applied Soft Computing, 2012, 13(2): 1193-1205.
  • 5Liu Y H, Liu Y C, Chen Y J. Fast support vector data descriptions for novelty detection[J]. IEEE Trans on Neural Networks, 2010, 21(8): 1296-1313.
  • 6唐明珠,王岳斌,阳春华.一种改进的支持向量数据描述故障诊断方法[J].控制与决策,2011,26(7):967-972. 被引量:16
  • 7顾鑫,王士同,许敏.领域自适应的最小包含球设计方法[J].控制与决策,2013,28(2):177-182. 被引量:4
  • 8Park J, Kang D, Kim J, et al. SVDD-based pattern denoising[J]. Neural Computer, 2007, 19(7): 1919-1938.
  • 9Camastra F, Verri A. A novel kernel method for clustering[J]. IEEE Trans on Pattern Analysis and Machine Intelligence, 2005, 27(5): 801-805.
  • 10Ben-Hur A, Horn D, Siegelmann H T, et al. Support vector clustering[J]. J of Machine Learning Research, 2002, 2: 125-137.

二级参考文献29

  • 1代建华,潘云鹤.一种基于分类一致性的决策规则获取算法[J].控制与决策,2004,19(10):1086-1090. 被引量:16
  • 2何明,李博,马兆丰,傅向华.粗糙集理论框架下的神经网络建模研究及应用[J].控制与决策,2005,20(7):782-785. 被引量:10
  • 3郑恩辉,李平,宋执环.代价敏感支持向量机[J].控制与决策,2006,21(4):473-476. 被引量:33
  • 4Hawkins D. Identifications of outliers[M].London:Chapman and Hall,1980.1-2.
  • 5Han J W,Damber M. Data mining:Concepts and technologies[M].San Francisco:Morgan Kaufmann Publishers,2001.381-394.
  • 6Knorr E,Ng R. Algorithms for mining distance-based outliers in large datasets[A].New York,1998.392-403.
  • 7Knorr E,Ng R,Tucakov V. Distance-based outliers:Algorithms and applications[J].VLDB J:Very Large Databases,2000,(3/4):237-253.
  • 8Rousseeuw P J,Leroy A M. Robust regression and outlier detection[M].New York:John Wiley and Sons,Inc,1987.1-18.
  • 9Kovács L,Vass D,Vidacs A. Improving quality of service parameter prediction with preliminary outlier detection and elimination[A].Budapest,2004.194-199.
  • 10Johnson T,Kwok I,Ng R T. Fast computation of 2-dimensional depth contours[A].New York:AAAI Press,1998.224-228.

共引文献18

同被引文献20

  • 1TAX D M J, DUIN R P W. Support vector domain description[ J] Pattern Recognition Letters, 1999, 20 ( 11 ) : 1191 - 1199.
  • 2TAX D M J, DUIN R P W. Support vector data description [ J ] Machine Learning, 2004, 54 ( 1 ) : 45 - 66.
  • 3TAX D M J, JUSZCZAK P. Kernel whitening for one-class classifi- cation[ J]. International Journal of Pattern Recognition and Artifi- cial Intelligence, 2003, 17(03) : 333 -347.
  • 4LIU B, XIAO Y, CAO L, et aL SVDD-based outlier detection on uncertain data[J]. Knowledge and Information Systems, 2013, 34 (3) : 597 -618.
  • 5CHA M, KIM J S, BAEK J G. Density weighted support vector data description[ J]. Expert Systems with Applications, 2014, 41 (7): 3343 - 3350.
  • 6REHMAN Z, LI T, YANG Y, et al. Hyper-e]lipsoidal clustering technique for evolving data stream [ J ]. Knowledge-Based Systems, 2013.
  • 7MIZUTANI T. Ellipsoidal rounding for nonnegative matrix factoriza- tion under noisy separability [ J ]. Journal of Machine Learning Re-search, 2014, 15:1011 -1039. 111.
  • 8WANG C D, LAI J H. Position regularized support vector domain description[ J ]. Pattern Recognition, 2013, 46(3) : 875 -884.
  • 9YANG H, HUANG K, KING I, et al. Localized support vector re- gression for time series prediction[ J]. Neurecomputing, 2009, 72 (10) : 2659 -2669.
  • 10CHANDOLA V, BANERJEE A, Kumar V. Anomaly detection : A survey [ J ]. ACM Computing Surveys ( CSUR ), 2009, 41 (3) . 15.

引证文献3

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部