期刊文献+

基于稀疏表示的雷达辐射源信号级融合识别算法 被引量:7

Signal-level fusion algorithm for radar emitter identification based on sparse representation
原文传递
导出
摘要 针对现有融合识别算法难以兼顾信息完备性和节点通信数据量的问题,提出一种基于信号稀疏表示的雷达辐射源信号级融合识别算法.该方法将接收信号投影到稀疏域并进行压缩,从而在稀疏域完成融合,最后利用融合后的稀疏系数进行识别.该方法既降低了通信数据量,又较好地保证了信息的完整性.仿真实验表明,相对于单一传感器和决策级融合,所提出的方法可有效提高信号识别性能. To solve the contradiction between the information completeness and data volume existing in the radar signal fusion, a signal-level fusion algorithm for radar emitter identification based on sparse representation is presented. In the algorithm, intercepted signals are projected to sparse domains and compressed for communication. Then the sparse coefficients are fused for recognition. The data of communication is decreased in the algorithm, and the available information of intercepted signal is also reserved. The simulations show that the recognition accuracy is improved compared with the single signal receiver and the decision-level fusion algorithms.
出处 《控制与决策》 EI CSCD 北大核心 2014年第10期1798-1802,共5页 Control and Decision
基金 国家自然科学基金项目(60901069) 国家863计划项目(2011AAXXXX061)
关键词 雷达辐射源 辐射源识别 数据融合 稀疏表示 信号级融合 radar emitter emitter identification data fusion sparse representation signal-level fusion
  • 相关文献

参考文献13

  • 1Manish G, Hareesh G, Arvind M. Electronic warfare: Issues and challenges for emitter classification[J]. Defence Science Journal, 2011, 61(3): 228-234.
  • 2Spezio A. Electronic warfare systems[J]. IEEE Trans on Microwave Theory and Techniques, 2002, 50(3): 633-644.
  • 3Farina A, Lombardo P, Marsella M. Joint tracking and identification algorithms for multisensor data[J]. IEE Proceedings of Radar Sonar Navigation, 2002, 149(6): 271-280.
  • 4李楠,曲长文,平殿发,苏峰.基于分布式传感器信息融合的辐射源识别[J].控制与决策,2010,25(12):1793-1798. 被引量:9
  • 5沈阳,陈永光,李修和.雷达辐射源识别的多元信息融合算法研究[J].电子与信息学报,2007,29(10):2329-2332. 被引量:24
  • 6Li S T, Yang B, Hu J. Performance comparison of different multi-resolution transforms for image fusion[J]. Information Fusion, 2011, 12(2): 74-84.
  • 7Li Z X, Papson S, Narayanan R M. Data-level fusion of multilook inverse synthetic aperture radar images[J]. IEEE Trans on Geoscience and Remote Sensing, 2008, 46(5): 1394-1406.
  • 8Ji Zheng-ping, Luciw M, Weng J, et al. Incremental online object learning in a vehicular radar-vision fusion framework[J]. IEEE Trans on Intelligent Transportation Systems, 2011, 12(2): 402-411.
  • 9Donoho D. Compressed sensing[J]. IEEE Trans on Information Theory, 2006, 52(4): 1289-1306.
  • 10Wright J, Ma Y, Mairal J, et al. Sparse representation for computer vision and pattern recognition[J]. Proc of the IEEE. 2010. 98(6): 1031-1044.

二级参考文献13

  • 1ZHANGGexiang,JINWeidong,HULaizhao.Resemblance Coefficient Based Intrapulse Feature Extraction Approach for Radar Emitter Signals[J].Chinese Journal of Electronics,2005,14(2):337-341. 被引量:43
  • 2Langley L E. Specific emitter identification and classical parameter fusion technology[C]. IEEE WESCON'93 Conf Record. San Francisco, 1993: 377-381.
  • 3Kawalec A, Owczarek R. Specific emitter identification using intrapulse data[C]. 1st European Radar Conference. Amsterdam, 2004: 249-252.
  • 4Carroll T L. A nonlinear dynamics method for signal identification[J]. Chaos: An Interdisciplinary J of Nonlinear Science, 2007, 17(1):23-30.
  • 5Abdulnasir Hossen, Fakhri Al-Wadahi, Joseph A Jervase. Classification of modulation signals using statistical signal characterization and artificial neural networks[J]. Engineering Applications of Artificial Intelligence, 2007, 20(4): 463-472.
  • 6Dudczyk J, Matuszewski J, Wnuk M. Applying the relational modeling and knowledge based techniques to the emitter database design[C]. 14th Int Conf on Microwaves, Radar and Wireless Communications. Gdansk, 2002, 1: 172-175.
  • 7Matuszewski J, Kawalec A. Knowledge-based signal processing for radar identification[C]. 9th Int Conf on Modern Problems of Radio Engineering, Telecommunications and Computer Science. Warsaw, 2008: 302-305.
  • 8Chen Ting, Luo Jingqing. A fuzzy recognition method of emitter based on variable precision rough set model[C]. The 9th Int Conf on Signal Processing Proce. Beijing, 2008: 2242-2245.
  • 9Wang Jiegui. Emitter target recognition based on multisensor data fusion of ESM and IR[C]. The 9th Int Conf on Signal Processing Proc. Beijing, 2008, 1508-1511.
  • 10Xu Dan, Yang Bo, Jiang Wenli, et al. An improved SYDUIKPCA algorithm for specific emitter identification[C]. Proc of the 2008 IEEE Int Conf on Information and Automation. Zhangjiajie, 2008: 692-696.

共引文献30

同被引文献52

引证文献7

二级引证文献36

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部