期刊文献+

基于DNA折纸的DNA复制的单分子检测和表征

Single-molecule detection and characterization of DNA replication based on DNA origami
下载PDF
导出
摘要 目的探索DNA复制的单分子检测和表征途径。方法单链DNA模板链的两端通过碱基互补配对固定在DNA折纸纳米结构上,利用原子力显微镜(AFM)在单个DNA分子水平上对复制过程中的DNA分子的不同阶段进行检测和表征,其中包括:复制前后的形貌,复制过程中大肠杆菌DNA聚合酶ⅠKlenow Fragment片段(KF)的分布,以及复制后Biotin-Streptavidin(BA)分子识别反应在单个DNA链上所引起的进一步形貌变化。同时,采用常规的琼脂糖凝胶电泳方法分析DNA复制前后的变化情况。结果(1)DNA模板链成功连结在三角折纸的特定位点,连接效率达到50%以上;(2)DNA复制过程中,KF结合在DNA模板链上,复制后KF从DNA链脱离;(3)复制前后DNA链高度变化明显,DNA链高度增加了约0.7 nm;(4)复制后,当加入Streptavidin时,其结合于含有Biotin标记的新合成DNA链位置处,形成BA复合物,平均高度达到约4.9 nm;(5)琼脂糖凝胶电泳结果也显示单链DNA变为双链,以及双链DNA分子上结合的BA复合物。结论通过将AFM与DNA折纸技术相结合,可实现单分子水平上的DNA复制的检测和表征,此方法将有助于研究DNA聚合酶的作用机制以及不同因素对DNA复制的影响。 Objective To investigate single-molecule detection and characterization of DNA replication. Methods Single-stranded DNA (ssDNA) as the template of DNA replication was attached to DNA origami by a hybridization reaction based on the complementary base-pairing principle. DNA replication catalyzed by E.coli DNA polymerase I Klenow Fragment (KF) was detected using atomic force microscopy (AFM). The height variations between the ssDNA and the double-stranded DNA (dsDNA), the distribution of KF during DNA replication and biotin-streptavidin (BA) complexes on the DNA strand after replication were detected. Agarose gel electrophoresis was employed to analyze the changes in the DNA after replication. Results The designed ssDNA could be anchored on the target positions of over 50% of the DNA origami. The KF was capable of binding to the ssDNA fixed on DNA origami and performing its catalytic activities, and was finally dissociated from the DNA after replication. The height of DNA strand increased by about 0.7 nm after replication. The addition of streptavidin also resulted in an DNA height increase to about 4.9 nm due to the formation of BA complexes on the biotinylated dsDNA. The resulting dsDNA and BA complex were subsequently confirmed by agarose gel electrophoresis. Conclusion The combination of AFM and DNA origami allows detection and characterization of DNA replication at the single molecule level, and this approach provides better insights into the mechanism of DNA polymerase and the factors affecting DNA replication.
出处 《南方医科大学学报》 CAS CSCD 北大核心 2014年第9期1235-1240,共6页 Journal of Southern Medical University
基金 国家自然科学基金(11375253 11074137 21073222) 国家科技部973项目(2012CB932600 2013CB932800) 中国科学院知识创新工程项目(KJCX2-EW-N03)~~
关键词 原子力显微镜 DNA折纸 DNA复制 单分子 atomic force microscopy DNA origami DNA replication single molecule
  • 相关文献

参考文献39

  • 1Tabor S, Richardson CC. DNA sequence analysis with a modifiedbacteriophage T7 DNA polymerase[J]. Proceedings of the NationalAcademy of Sciences, 1987, 84(14): 4767-71.
  • 2Comey CT, Budowle B, Adams DE, et al. PCR amplification andtyping of the HLA DQ alpha gene in forensic samples[J]. JForensic Sci, 1993, 38(2): 239-49.
  • 3Stillman B. Smart machines at the DNA replication fork[J]. Cell,1994, 78(5): 725-8.
  • 4Bambara RA, Murante RS, Henricksen LA. Enzymes and reactionsat the eukaryotic DNA replication fork[J]. J Biol Chem, 1997, 272(8): 4647-50.
  • 5Joyce CM, Steitz TA. Function and structure relationships in DNApolymerases[J]. Annu Rev Biochem, 1994, 63(1): 777-822.
  • 6uller RS, Funnell BE, Kornberg A. The dnaA protein complex withthe E[J]. coli chromosomal replication origin and other DNA sites.Cell, 1984, 38(3): 889-900.
  • 7Wahle E, Lasken RS, Kornberg A. The dnaB-dnaC replicationprotein complex of Escherichia coli. II. Role of the complex inmobilizing dnaB functions[J]. J Biol Chem, 1989, 264(5): 2469-75.
  • 8Friedman KL, Brewer BJ. Analysis of replication intermediates bytwo-dimensional agarose gel electrophoresis [J]. Methods inEnzymology, 1995, 1262: 613.
  • 9Huberman JA, Riggs AD. On the mechanism of DNA replication inmammalian chromosomes[J]. J Mol Biol, 1968, 32(2): 327-41.
  • 10Naktinis V, Onrust R, Fang L, et al. Assembly of a chromosomalreplication machine: two DNA polymerases, a clamp loader, andsliding clamps in one holoenzyme particle. II. Intermediatecomplex between the clamp loader and its clamp[J]. J Biol Chem,1995, 270(22): 13358-65.

二级参考文献7

  • 1Sceman N C.Nanoscate assembly and manipulation of branched DNA:A biological starting point for nanotechnology.In:Lewis J Quel J L.eds.NANOCON Proceedings.NANOCON.P.O.Box 40176.Bellevue.WA 98004.1989.101-107.
  • 2Yan H,.Reif J H.LaBean T H.DNA-templated self-assembly of protein arrays and highly condutive nanowires.Science.2003.301:1882-1884.
  • 3Winfree E,Lin F.Seeman N C,et al.Design and self-assembly of tow-dimensional DNA drystals,Nature.1998,394:539-544.
  • 4Rothemund P W.Papndakis N.Winfree E.Algorithmic self-assembly of DNA Sierpinski triangles.PLoS Biol.2004,2:2041-2053.
  • 5Rothemund P W.Ekan-Nkodo A.Winfree E,et al .Design and characterization of programmable DNA nanotubes.J Am Chem Soc.2004,126:16344-16352.
  • 6LaBean T H,Reif J H,Seeman N C,et al .Construction.analysis.ligation ,and self-assembly of Dna triple crossover complexes.J Am Chem Soc.2000.122:.1848-1860.
  • 7Rothemund P W.Folding DNA to create nanoscale shapes and patterns.Naure.2006.440:297-302.

共引文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部