摘要
Advances in material science and mathematics in conjunction with tech- nological needs have triggered the use of material and electric components with fractional order physical properties. This paper considers the mathematical model of a piezoelectric wind flow energy harvester system for which the capacitance of the piezoelectric material has fractional order current-voltage characteristics. Additionally the mechanical element is assumed to have fractional order damping. The analysis is focused on the effects of order of derivatives on the appearance and characteristics of limit circle oscillations (LCO). It is obtained that, the order of derivatives to enhance the amplitude of LCO and lower the threshold condition leading to LCO. The domains of efficiency of the system are illustrated in various parameters spaces.
Advances in material science and mathematics in conjunction with tech- nological needs have triggered the use of material and electric components with fractional order physical properties. This paper considers the mathematical model of a piezoelectric wind flow energy harvester system for which the capacitance of the piezoelectric material has fractional order current-voltage characteristics. Additionally the mechanical element is assumed to have fractional order damping. The analysis is focused on the effects of order of derivatives on the appearance and characteristics of limit circle oscillations (LCO). It is obtained that, the order of derivatives to enhance the amplitude of LCO and lower the threshold condition leading to LCO. The domains of efficiency of the system are illustrated in various parameters spaces.
基金
supported by the Polish National Science Center(G.L.)(2012/05/B/ST8/00080)