期刊文献+

基于神经网络的潜艇水面航向控制研究

Research on the Submarine Course Control Based on Neural Network
下载PDF
导出
摘要 针对水面航行的潜艇易受到风浪高频干扰而产生频繁操舵的问题,提出了采用直接模型参考的神经网络自适应控制方法.在潜艇航向的离线辨识中引入了参考模型,通过参考模型的输出和潜艇模型的实际输出的比较来调整RBF神经网络的权值,以达到潜艇水面航向的自适应控制,并且针对风浪干扰设计了切比雪夫II型滤波器.仿真结果表明:结合切比雪夫II型滤波算法和直接模型参考神经网络自适应控制算法,能够很好地解决潜艇航向控制在海浪干扰下的无效操舵问题. According to the problem that the high frequency disturbance of wind and wave induced operating rudders , the direct model with reference to the control means of self-adapting neural network was adopted .The reference model was instructed by identifying off line of submarine's course.The weight value of RBF neural network was set by the output of reference model and the actual output of submarine model .In this way, the self-adapting control of submarine at surface course was achieved .And Chebyshev 2nd filter was designed to against wave disturb .The simulation demonstrated that the integration of Chebyshev 2nd filter algorithm and self-adapting control algorithm of direct model with reference to neural network can solve the problem of void steering of course control under wind and wave disturb .
出处 《中南民族大学学报(自然科学版)》 CAS 2014年第3期85-90,共6页 Journal of South-Central University for Nationalities:Natural Science Edition
关键词 潜艇 操舵 神经网络 滤波 submarine steering neural network filter
  • 相关文献

参考文献10

二级参考文献31

  • 1徐田来,游文虎,崔平远.基于模糊自适应卡尔曼滤波的INS/GPS组合导航系统算法研究[J].宇航学报,2005,26(5):571-575. 被引量:59
  • 2李世保,刘常波,彭达胜,任正斌,解贵新.潜艇六自由度运动仿真器[J].计算机仿真,1996,13(1):21-30. 被引量:11
  • 3[1]葛守西.在洪水预报中应用的现代系统理论和方法[M].武汉:长委会水文局,1990.
  • 4[2]Fernando A K,Jayawardena A W.Runoff forecasting using RBF networks with OLS algorithm[J].J Hydrologic Engrg,ASCE,1998,3(3):203-209.
  • 5[3]Zhang Bin,Govindaraju Rao S.Prediction of watershed runoff using Bayesian concepts and modular neural networks[J].Water Resour Res,2000,36:753-762.
  • 6[9]Azimi-Sadjadi M R,Fast iearning process of multi-layer NN using RLS method[C]//IEEE Trans Signal Processing,1992:40-46.
  • 7[10]Shah S.Optimal filtering algorithms for fast learning in feedforward NN[J].Neural Networks,1992,5:779-787.
  • 8Wang F Y,Automatica,1990年,26卷,5期,833页
  • 9Zhou Q J,Proc of Multinational Instrumentational Conference,1983年
  • 10Fu K S,IEEE Trans AC,1971年,16卷,1期,70页

共引文献63

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部