期刊文献+

有限差分法解薛定谔方程及其应用 被引量:3

Finite Difference Method for Solving the Schrodinger Equation and Its Application
下载PDF
导出
摘要 用有限差分法解薛定谔方程将连续的量子力学本征值问题转化为离散的本征值问题,在Matlab编程环境下易于实现。文章以一维无限深势阱问题检验有限差分法解薛定谔方程,以有势垒的一维无限深势阱问题探究势垒的围栏效应。模拟研究清洁铜表面48个铁原子构成的圆形量子围栏电子态密度,观察到量子围栏对电子态的吸收效应。 The continuous eigenvalue problem of quantum mechanics can be converted into the discrete eigenvalue problem by using finite difference method,and it is very easy to achieve a target by Matlab software. In this paper,the finite difference method for solving the schrdinger equation can be tested with the problem of one dimensional infinite deep potential well,and the fence effect of potential barrier will be explored by one dimensional infinite deep potential well with potential barrier. The density of electronic states of circular quantum corral which is composed of 48 Fe adatoms positioned into a circular ring on the clean Cu surface is simulated and studied,and the sink effect of electronic states under the action of quantum corral is observed.
出处 《常州工学院学报》 2014年第4期37-41,共5页 Journal of Changzhou Institute of Technology
基金 2014年江苏省大学生创新创业训练计划(201410305042Y)
关键词 有限差分法 薛定谔方程 无限深势阱 量子围栏 finite difference method schrodinger equation infinite deep potential well quantum corral
  • 相关文献

参考文献12

二级参考文献44

  • 1何菊明.薛定谔方程的数值计算设计[J].武汉化工学院学报,2004,26(4):93-94. 被引量:1
  • 2陈皓,高明,汪青杰.用有限差分法解薛定谔方程[J].沈阳航空工业学院学报,2005,22(1):87-88. 被引量:7
  • 3惠萍.半导体量子环的基态和激发态的能量的计算[J].广东教育学院学报,2007,27(3):38-42. 被引量:4
  • 4S. Datta, Electronic transport in Mesoscopic systems, Cambridge University Press, Cabridge, 1995.
  • 5C. Lanczos, An iteration method for the solution of eigenvalue problem of linear differential and integral operators, Journal of Research of National Bureau of Standards, 1950, 45:255.
  • 6I. H. Lee, Y. H. Kim, andR. M. Martin, One-waymultigrid method in electronic structure calculations, Phys. Rev. B. , 2000, 61:4397.
  • 7W. Zhang, N. Mingo, and T. S. Fisher, Simulation of phonon transport across a non-polar nanowire junction using an atomistic Green's function method, Phys. Rev. B, 2007, 76: 195429.
  • 8M. Yang, S. J. Xu, and J. Wang, Influence of capping layer and atomic interdiffusion on the strain distribution in single and double self-assembled InAs/GaAs quantum dots, Appl. Phys. Lett. 2008, 92: 083112.
  • 9Cooney P J, Kanter E P,Vager Z. Convenient Numerical Technique of Solving the One-dimensional Schroding Equation for Bound States[J]. Am J Phys,1981,49.76-77
  • 10曾谨言.量子力学 [M].北京:科学出版社,2003..

共引文献19

同被引文献22

引证文献3

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部