期刊文献+

关于双曲周期点与双曲周期轨的一种等价性及其证明

An Equivalence Property Between Hyperbolic Periodic Point and Hyperbolic Periodic Orbit and Its Proof
下载PDF
导出
摘要 阐述双曲周期点与双曲周期轨的异同,指出双曲周期点与双曲周期轨之间的一种相互蕴含关系,并利用微分流形上微分同胚的保维数性质、复合微分同胚求导法则给予严格证明。 We elaborate the similarities and differences between hyperbolic periodic point and hyperbolic periodic orbit. Using the persisting property of dimension of differential homeomorphism and the derivative principle of composite homeomorphism, a rigorous proof is presented to imply the mutual equivalence between them.
作者 王磊 袁泉
出处 《安庆师范学院学报(自然科学版)》 2014年第3期10-12,16,共4页 Journal of Anqing Teachers College(Natural Science Edition)
基金 国家自然科学基金(11302080) 中国博士后科学基金(2013M530343) 合肥学院重点建设学科基金(14xk08)资助
关键词 双曲周期点 双曲周期轨 双曲直和分解 hyperbolic periodic point, hyperbolic periodic orbit, hyperbolic direct sum decomposition
  • 相关文献

参考文献8

二级参考文献31

  • 1QIU WeiYuan,YIN YongCheng.Proof of the Branner-Hubbard conjecture on Cantor Julia sets[J].Science China Mathematics,2009,52(1):45-65. 被引量:8
  • 2廖山涛.阻碍集Ⅰ[J].数学学报,1980,23:411-453.
  • 3廖山涛.阻碍集Ⅱ[J].北京大学学报,1981,2:1-36.
  • 4[1]Bowen, R., ω-limit sets for axiom a diffeomorphisms [J], J. Diff. Eqns., 18(1975), 333-339.
  • 5[2]Walters, P., On the Pseudo Orbit Tracing Property and Its Relationship to Stability [A], Lecture Notes in Mathematics 668 [M], Springer, Berlin, 1977, 231-244.
  • 6[3]Thomas, R. F., Stability properties of one-parameter flows [J], Proc. London Math.Soc., 45(1982), 479 505.
  • 7[4]Pilyugin, S. Yu., Shadowing in structurally stable flows [J], J. Diff. Eqns., 140(1997),238-265.
  • 8[5]Pilyugin, S. Yu., Shadowing in Dynamical Systems, Lecture Notes in Mathematics 1706[M], Springer, Berlin, 1999.
  • 9[6]Palmer, K., Shadowing in Dynamical Systems, Theory and Applications [M], Klumer Academic Publishers, Dordrecht, 2000.
  • 10[7]Eirola, T., Nevanlinna, O. & Pilyugin, S. Yu., Limit shadowing property [J], Numer.Funct. Anal. Optimal., 18(1997), 75 92.

共引文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部