期刊文献+

Gronwall-Bellman积分不等式在分数阶微分方程中的应用 被引量:1

Applications of Gronwall-Bellman Integral inequality in Fractional-Order Differential Equations
下载PDF
导出
摘要 本文主要介绍了Gronwall-Bellman积分不等式及其推广形式在分数阶微分方程中的应用。利用Gronwall-Bellman积分不等式及其推广形式证明了分数阶微分方程解的唯一性,获得了一类分数阶时滞微分方程有限时间稳定的充分条件。 The applications of the Gronwall-Bellman integral inequality and its extended form in the fractional-order differential equation are mainly introduced in this paper. Taking advantage of Gronwall-Bellman integral inequality and its extended form, we prove the uniqueness of the fractional-order differential equations and obtain the sufficient conditions of finite-time stability for a class of fractional-order differential equation with delay.
出处 《安庆师范学院学报(自然科学版)》 2014年第3期13-16,共4页 Journal of Anqing Teachers College(Natural Science Edition)
基金 安徽省高等学校省级自然科学研究基金项目(KJ2011A197 KJ2013Z186)资助
关键词 Gronwall—Bellman积分不等式 分数阶微分方程 初值问题 稳定性 Gronwall-BeUman integral inequality, fractional-order differential equations, initial value problems, stability
  • 相关文献

参考文献12

  • 1B. G. Pachpatte. Ineualities for differential and integral equations [M] . New York : Academic Press,1998.
  • 2S. D. Sever. Some Granwal/ type inequalities and applications [ M] . Nova Science Pub Incorporated, 2003 .
  • 3A. A. Kilbas, H. M. Sfivastava, J. J. TrujiUo. Theory and ap- plications of fractional differential equations [ M ]. Elsevier Sci- ence B. V. , Amsterdam, The Netherlands, 2006.
  • 4Podlubny. Fractional differential equation [ M ]. San Diego:Aca- demic Press , 1999.
  • 5邹晓范,刘春妍.Gronwall积分不等式在微分方程中的应用[J].佳木斯大学学报(自然科学版),2004,22(3):417-419. 被引量:5
  • 6H. Ye,J. Gao,Y. Ding. A generalized Gronwall inequality and its application to a fractional differential equation [ J ]. Journal of Mathematical Analysis and Applications,2007,328 ( 2 ) : 1075 - 1081.
  • 7K. S. Miller, B. Ross. An introduction to the fractional calculus and fractional differential equations[ J]. John Wiley & Sons, NewYork, NY, USA, 1993.
  • 8K. Diethelm. The analysis of fractional differential equations [J]. Springer, Berlin , Germany, 2010.
  • 9M. P. Lazarevi'c, A. M. Spasi'c. Finite-time stability analy- sis of fractional order time - delay systems: Gronwall' s approach [J]. Mathematical and Computer Modelling, 2009 , 49(3 -4) : 475 - 481.
  • 10Ahdulaziz Aloft , Jinde Cao , Ahmed Elaiw, Abdullab A1- Mazrooeil. Delay - dependent stability criterion of Caputo frac- tional neural networks with distributed delay[J ]. Discrete Dynam- ics in Nature and Society,2014 ,Article ID 529358:1 -6.

二级参考文献12

  • 1KILBAS A A,SRIVASTAVA,TRUJILLO J J.Theory and applications of fractional differential equations[M].Amsterda:Elsevier Science B V,2006:69-134.
  • 2DELBOSCO D,RODINO L.Existence and uniqueness for a nonlinear fractional differential equation[J].J Math Anal Appl,1996,204(2):609-625.
  • 3LAKSHMIKANTHAM V,VATSALA A S.Basic theory of fractional differential equation[J].Nonlinear Anal,2008,69:2677-2682.
  • 4ZHANG Shuqin.The existence of a positive solution for a nonlinear fractional differential equation[J].J Math Anal Appl,2000,252:804-812.
  • 5ZHANG Shuqin.Existence of positive solution for some class of nonlinear fractional differential equations[J].J Math Anal Appl,2003,278:136-148.
  • 6YU Cheng,GAO Guozhu.On the solution of nonlinear fractional order differential equation[J].Nonlinear Anal,2005,63:971-976.
  • 7YU Cheng,GAO Guozhu.Existence of fractional differential equations[J].J Math Anal Appl,2005,310(1):26-29.
  • 8BAI Zhanbing,LV Haishen.Positive solutions for boundary value problem of nonlinear fractional differential equation[J].J Math Anal Appl,2005,311:495-505.
  • 9郭大钧,黄春朝,梁方豪,等.实变函数与泛函分析[M].济南:山东大学出版社,2008:281-282.
  • 10王高雄.常微分方程[M].北京:高等教育出版社,2001..

共引文献7

同被引文献4

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部