摘要
给出了求解一类时间分数阶时滞微分方程的数值解法,将传统对时间的一阶导数利用分数阶导数α(0<α<1)阶导数代替,给出了求解微分方程的差分格式,并对差分格式证明了收敛性和稳定性,数值算例检验该格式解决此类方程是有效的.
A numerical method is gived to solve one time fractional delay differential equation,the fractional derivative, order of α(0〈α〈1) ,is used to instead of first derivative,then we give a difference scheme and prove that the difference schemes are stable and convergence. Numerical example shows that the numerical method is a practical method.
出处
《河南科学》
2014年第9期1688-1691,共4页
Henan Science
基金
国家自然科学基金资助项目(11271101)
关键词
时间分数阶
延迟微分方程
无条件收敛
无条件稳定
time fractional
delay differential equation
unconditional convergence
unconditional stable