期刊文献+

基于支持向量机的四自由度船舶操纵运动黑箱建模 被引量:9

Black-Box Modeling of Ship Maneuvering Motion in 4 Degrees of Freedom Based on Support Vector Machines
下载PDF
导出
摘要 基于整体型船舶操纵运动数学模型,结合船舶操纵运动中横倾运动的特点,建立了应用支持向量机的四自由度船舶操纵运动黑箱预报模型。对某集装箱船进行了10°/10°、15°/15°、20°/20°Z形试验和5°、15°、35°回转试验的数值仿真,获得了操纵运动仿真数据;使用1%的15°/15°、20°/20°Z形试验和5°、15°回转试验仿真数据来训练支持向量,并用训练好的支持向量机预报10°/10°、20°/20°Z形试验和35°回转试验;将预报结果与仿真试验数据进行对比,验证了所提出黑箱预报模型的有效性及良好的泛化性能。 Based on a whole ship model and heeling motion characteristics in ship maneuvering motion, a black-box prediction model for ship maneuvering motion in 4 degrees of freedom is established by using support vector machines. A container ship is taken as study object; while 10°/10°, 15°/15°, 20°/20° zigzag tests and 5°, 15°, 35° turning circle maneuvers are simulated. One percent of the simulation data in 15°/15°, 20°/20° zigzag tests and 5°, 15° turning circle maneuvers are used to train the support vectors. The trained support vector machines is used to predict the 10°/10°, 20°/20° zigzag tests and 35° turning circle maneuver. The predicted results are compared with those of simulation tests to demonstrate the good prediction capability and generalization performance of the proposed model.
出处 《中国造船》 EI CSCD 北大核心 2014年第3期147-155,共9页 Shipbuilding of China
基金 国家自然科学基金项目(51279106) 教育部高等学校博士学科点专项科研基金项目(20110073110009)
关键词 船舶操纵 黑箱建模 支持向量机 四自由度 ship maneuvering black-box modeling support vector machines 4 degrees of freedom
  • 相关文献

参考文献11

  • 1SON K H, NOMOTO K. On the coupled motion of steering and rolling of a high speed container ship[J]. Naval Architecture and Ocean Engineering, 1982, 20:73-83.
  • 2FOSSEN T I. Handbook of marine craft hydrodynamics and motion control[M]. John Wiley & Sons Inc. New York, USA, 2011.
  • 3MOGENS B, JENSEN A G Dynamic properties of a container vessel with low metacentric height[J]. Transactions of the Institute of Measurement and Control, 1997, 19(2):78-93.
  • 4张显库,杨佐昌,关巍,陈铎,谢洪彬.基于船舶回转试验建立横摇响应型数学模型[J].中国航海,2009,32(4):77-79. 被引量:11
  • 5HESS D E, FALLER W E. Simulation of ship manoeuvres using recursive neural networks[C]// Proceeding of 23rd Symposium on Naval Hydrodynamics, Val de Reuil, France, 2001: 223-242.
  • 6LUO Weilin, ZOU Zaojian. Parametric identification of ship maneuvering models by using support vector machines[J]. Journal of Ship Research, 2009, 53 (1): 19-30.
  • 7ZHANG Xinguang, ZOU Zaojian. Black-box modeling of nonlinear hydrodynamic model for ship manoeuvring based on support-vector-regression[C]//International Conference on Marine Simulation and Ship Manoeuvrability 2012 (MARSIM 2012), 2012 Singapore.
  • 8徐锋,邹早建,徐小卡,尹建川.基于支持向量机的船舶操纵运动黑箱建模[C]//20120?国制导、导航与控制学术会议,北京,2012:1403-1406.
  • 9刘丽桑,彭侠夫.二阶灰色神经网络在船舶横摇预报中的应用[J].船舶力学,2011,15(5):468-472. 被引量:5
  • 10YIN Jianchuan, ZOU Zaojian, XU Feng. On-line prediction of ship roll motion during maneuvering using sequential learning RBF neural networks[J]. Ocean engineering, 2013, 61:139-147.

二级参考文献9

共引文献13

同被引文献33

引证文献9

二级引证文献25

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部