摘要
利用拉格朗日方程建立了含间隙直齿圆柱齿轮副的动力学模型,通过齿轮轮齿弹性变形的原理数值计算建立了时变刚度的数学模型。利用4~5阶Runge-Kutta数值积分法对系统进行了数值求解。结合Poincaré映射图、相图、FFT频谱图、系统分岔图分析了系统随激励频率和阻尼变化时的动力学行为,发现了其稳定周期运动和倍周期运动及混沌运动。通过齿轮冲击模型数值计算,找出了不同初值情况下的冲击状态。
A nonlinear dynamic modeling for spur gear pair with the clearance is established by La-grange equation.The time-varying stiffness'mathematical model is established by the numerical calculation for principle of gear tooth deformation.The nonlinear dynamic equations are solved by employing variable step size 4~5 order Runge-kutta integration method and the bifurcation dia-grams are obtained.The nonlinear dynamics characteristics of the system are discussed for the variation of the exciting frequency or damping and classified based on bifurcation diagrams,phase portraits,Poincarémaps and FFT spectrum.The stable period motion,double period motion and chaotic motion are found.The gear impact state under different initial values is found by the nu-merical calculated for gear impact model.
出处
《兰州交通大学学报》
CAS
2014年第4期196-202,共7页
Journal of Lanzhou Jiaotong University
基金
甘肃省自然科学基金(1208RJZA111)
关键词
非线性动力学
分岔
冲击状态
齿轮副
nonlinear dynamics
bifurcation
gear impact state
gear pair