期刊文献+

基于特征匹配的螺柱视觉识别方法研究 被引量:1

Visual Recognition Method of Stud Based on Feature Matching
下载PDF
导出
摘要 提出了一种基于特征匹配的螺柱视觉识别方法。该方法将螺柱识别与定位过程分为两步:训练和识别。在训练阶段,完成螺柱样本特征库的建立;在识别阶段,检测待识别图像中螺柱的类型和位姿数据,为分拣提供准确的螺柱类别及抓取位置信息。实验结果表明,该方法能够对视场范围内任意摆放螺柱实现准确识别与定位。 Recognizing and localizing a stud is the core part of the automatic stud sorting system .A visual recognition method of stud based on feature matching was proposed .The recognition and location process was divided into two stages :training stage and recognition stage .In the training stage ,a database of features of the stud samples was established .In the recognition stage ,the type and pose information of the stud were detected ,and it would be used to sort out the stud .Experimental results show that the method is able to recognize and localize the studs that are in arbitrary poses .
作者 刘哲 唐立新
出处 《机械工程与自动化》 2014年第5期28-30,共3页 Mechanical Engineering & Automation
关键词 视觉识别 特征匹配 图像分割 螺柱特征 visual recognition feature matching image segmentation features of stud
  • 相关文献

参考文献6

  • 1章毓晋.图像工程(上册)一图像处理[M].北京.清华大学出版社.2006.
  • 2冈萨雷斯.数字图像处理[M].北京:电子工业出版社,2003..
  • 3Mastylo M. Bilinear interpolation theorems andapplications[J]. Journal of Functional Analysis>2013,265(2):185-207.
  • 4王植,贺赛先.一种基于Canny理论的自适应边缘检测方法[J].中国图象图形学报(A辑),2004,9(8):957-962. 被引量:214
  • 5姚旭,王晓丹,张玉玺,权文.特征选择方法综述[J].控制与决策,2012,27(2):161-166. 被引量:207
  • 6Richard H, Andrew Z. Multiple view geometry incomputer vision [M]. 2rd ed. Cambridge: The PressSyndicate of the University of Cambridge,2003.

二级参考文献58

  • 1Li G-Z, Yang J Y. Feature selection for ensemble learning and its application[M]. Machine Learning in Bioinformatics, 2008: 135-155.
  • 2Sheinvald J, Byron Dom, Wayne Niblack. A modelling approach to feature selection[J]. Proc of 10th Int Conf on Pattern Recognition, 1990, 6(1): 535-539.
  • 3Cardie C. Using decision trees to improve case-based learning[C]. Proc of 10th Int Conf on Machine Learning. Amherst, 1993: 25-32.
  • 4Modrzejewski M. Feature selection using rough sets theory[C]. Proc of the European Conf on Machine ,Learning. 1993: 213-226.
  • 5Ding C, Peng H. Minimum redundancy feature selection from microarray gene expression data[J]. J of Bioinformatics and Computational Biology, 2005, 3(2): 185-205.
  • 6Francois Fleuret. Fast binary feature selection with conditional mutual information[J]. J of Machine Learning Research, 2004, 5(10): 1531-1555.
  • 7Kwak N, Choi C-H. Input feature selection by mutual information based on Parzen window[J]. IEEE Trans on Pattern Analysis and Machine Intelligence, 2002, 24(12): 1667-1671.
  • 8Novovicova J, Petr S, Michal H, et al. Conditional mutual information based feature selection for classification task[C]. Proc of the 12th Iberoamericann Congress on Pattern Recognition. Valparaiso, 2007: 417-426.
  • 9Qu G, Hariri S, Yousif M. A new dependency and correlation analysis for features[J]. IEEE Trans on Knowledge and Data Engineering, 2005, 17(9): 1199- 1207.
  • 10Forman G. An extensive empirical study of feature selection metrics for text classification[J]. J of Machine Learning Research, 2003, 3(11): 1289-1305.

共引文献555

同被引文献2

引证文献1

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部