期刊文献+

微重力下气液分离特性的数值模拟 被引量:3

Numerical simulation of microgravity gas-liquid separation characteristics
下载PDF
导出
摘要 微重力下离心式气液分离技术以分离环境不受重力条件的影响而广泛应用于航天器流体技术、环境控制与生命保障系统等领域.本文对微重力工况下离心式气液分离特性进行了数值模拟研究,通过正交实验法分析在转速、入口速度、含气量、黏度、温度综合作用时,各因素影响的主次关系.结果表明,转速、含气量、温度、黏度对分离效率的影响比较明显,且随转速、含气量、温度的增加,分离效率逐渐增加,而随黏度的增加分离效率逐渐降低,入口速度对分离效率的影响较小,这与美国地面实验的趋势大致相同,分离效率在92%~94%范围内.研究结果可为我国空间站环控生保技术采用蒸汽压缩蒸馏方法进行尿液分离的进一步研究提供基础数据. Microgravity centrifugal gas-liquid separation technology with its separation environment is not affected by gravity condition, which is widely used in spacecraft fluid technology, environment control and life support system, etc. In this paper, the numerical simulation has done in the character- istics of centrifugal gas-liquid separation under microgravity environment. When analysing the master- subordinate relations of revolving speed, inlet velocity, air content, viscosity and temperature as they are interacting with each other in the orthogonal experiment, it can be concluded that the separation efficiency is dramatically affected by revolving speed, air content, viscosity and temperature and as the increase of revolving speed, air content and temperature, the separation efficiency gradually decreases. Moreover, inlet velocity has less effect on the separation efficiency. These results are roughly same as that of American ground experiments. The separation efficiency ranges between 92 % and 94 %. The research conclusions could provide some basic data for Chinese space station ECLSS technology using vapor compression distillation method to further urine separation research.
作者 杨飞 张永健
出处 《北京交通大学学报》 CAS CSCD 北大核心 2014年第4期14-19,共6页 JOURNAL OF BEIJING JIAOTONG UNIVERSITY
关键词 微重力 离心式气液分离 数值模拟 分离效率 microgravity centrifugal gas-liquid separation numerical simulation the separation effi-ciency
  • 相关文献

参考文献7

  • 1张柏楠,戚发轫.中国载人航天技术的历史性跨越[J].航天器工程,2008,17(5):1-6. 被引量:9
  • 2周抗寒,傅岚,韩永强,李俊荣.再生式环控生保技术研究及进展[J].航天医学与医学工程,2003,16(z1):566-572. 被引量:36
  • 3Miemik J H, Baer-Peckham D L. Mass balance sensitivity for space station freedom: closed loop life support [J]. Soci- ety of Automotive Engineers, 1991:241 -252.
  • 4Wieland P, Hutchens C, Long D. Final report on life testing of the vapor compression distillation/urine processing as- sembly(VCD/UPA) at the marshall space flight center (1993 to 1997)[R]. Alabama: Marshall Space Flight Cen- ter, Marshall Space Flight Center, 1998.
  • 5Igor Carron, Frederick R Best. Gas-liquid annular flow un- der microgravity conditions: A temporal linear stability study[J]. International Journal of Multiphase Flow, 1994, 20(6) : 1085 - 1093.
  • 6胡文瑞.微重力科学概论[M].北京:科学出版社,2010:1-16.
  • 7张慢来,冯进,刘孝光,丁凌云.一种新型离心式气液分离器分离性能的数值模拟与试验研究[J].流体机械,2007,35(8):9-13. 被引量:14

二级参考文献25

  • 1栾恩杰.中国空间探索的切入点——“地月日大系统研究”的观念[J].航天器工程,2007,16(3):1-8. 被引量:2
  • 2[1]Carrasquillo RL. ECLSS regenerative systems comparative testing and subsystem selection[R]. SAE paper 911415, 1991.
  • 3[2]Ray CD.The space station air revitalization subsystem design concept [R]. SAE paper , 871448, 1987. .
  • 4[3]Boyda RB.EDC development and testing for the space station program. SAE 1986 Transactions[R], SAE paper 860918,1986.
  • 5[4]Heppner DB,Electrochemical and steam-desorbed aine CO2 concentration:subsystem comparison[R]. SAE paper 831120,1983.
  • 6[6]Spina L,Lee MC. Comparison of CO2 reduction process - bosch and sabatier[R]. SAE paper 851343, 1985.
  • 7[7]Otsuji K, Hanabusa O, Sawada T,et al.An experimental study of the bosch and the Sabatier CO2 reduction processes[R]. SAE paper 871517, 1987.
  • 8[9]Samsonov NM. Complex of systems for oxygen recovery aboard a manned space station[R]. SAE paper 932275 1993.
  • 9[10]Samsonov NM,Farafonv NS. Experience in development and long term operation of mir′s system for oxygen generation by electrolysis[C]. 30 th International Conference on Environmental System . Toulouse,Italy, July 10-13,2000.
  • 10[11]Samsonov NM,Bolo LS.Water recovery and oxygen generation by electrolysis aboard the international space station. 32th International Conference on Environmental System[C] . San Autonio ,TX ,USA , July 15-18,2002.

共引文献59

同被引文献49

  • 1倪萌,M.K.H.Leung,K.Sumathy.电解水制氢技术进展[J].能源环境保护,2004,18(5):5-9. 被引量:59
  • 2康琦,侯瑞.微重力流体管理在航天工程中的应用[J].自然杂志,2007,29(6):328-334. 被引量:7
  • 3金向红,金有海,王建军,王振波.气-液旋流分离技术应用的研究进展[J].化工机械,2007,34(6):351-355. 被引量:31
  • 4卜掰瑁.曹军,杨晓林.载人航天器气液分离技术综述[J].航天器工程.201.1,23(2):121-131.
  • 5HOYT N C. The performance of passive cyclonic separa- tors in microgravity[D]. Cleveland: Case Western Re- serve University, 2013.
  • 6WESTERMANN H, Mf,)LLER R. Design validation -via parabolic flight tests of a condensate buffer equalizing a discontinuous gas/water flow between a condensing heat exchanger and a water separator: SAE 2006-01-2087[R]. Warrendale: SAE, 2006.
  • 7HOYT N C, KAMOTANI Y, KADAMBI J. Computa- tional investigation of the nasa cascade cyclonic separation device: AIAA-2008-0809[R]. Reton, AIAA. 2008.
  • 8张文伟,杨春信,王哗.直通旋风式高压水分离器性能研究[c]//中国航空学会2009年第八届环控暨人机工效学术交流会议论文集.北京:中国航空学会,2009:407-411.
  • 9ZHANG W W, YANG C X, KE P. Computational inves tigation of the high pressure water separator[C]//Asia-Pa cific International Symposium on Aerospace Technology Beijing: Chinese Society of Aeronautics and Astronautics 2010 99-103.
  • 10STRUBELJ L, TISELJ I. Two-fluid model with interface sharpening[J]. International Journal for Numerical Meth- ods in Engineering, 2010, 85(5): 575-590.

引证文献3

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部