期刊文献+

车载立方体全景影像匹配点的粗差检测方法 被引量:8

A Gross Error Detection Method of Vehicle-borne Cubic Panoramic Image Sequence
原文传递
导出
摘要 针对低匹配内点率情况,利用随机抽样一致性算法(RANSAC)估计车载全景序列影像的极几何模型不稳定,造成大量匹配点的粗差无法检测或误检测问题,提出了一种基于多约束条件的粗差检测方法。以冗余粗差为约束条件,采用SIFT和最近邻匹配方法获取独立随机匹配点,并构建特征光流矢量。利用光流幅度和方向直方图统计结果,融合极线、尺度和天空点约束条件实现全景影像匹配点的粗差检测。通过不同数据的实验分析,在短基线条件下,可以有效地检测出大部分由纹理重复性、尺度变化和运动物体产生的匹配粗差点。与传统方法比较,本文方法可获得更高的匹配正确点数和正确率,尤其在场景复杂造成的低内点率情况下,算法表现较为稳定。 Because the epipolar geometry model estimation of panoramic images is unstable under the low match inlier ratio cases, large numbers of outliers or errors cannot be detected using RANSAC method. A new gross error detection method based on multiple constraints is presented for vehicleborne panoramic image sequences. First, the initial matching points are extracted using SIFT and nearest neighbor matching, then independent random matching points are constructed by redundant gross error constraints. Second, the movement relationships between panoramic images are approximately expressed by the histogram statistics of optical flow magnitude and direction, which can effectively improve the matching inlier ratio. Finally, the epipolar geometric constraint, scale constraint and sky point constraint are used for gross error detection. Several panoramic images were selected and used for experiments. An analysis and comparison were carried out on these data. The results show that the proposed method works well in short-baseline conditions for the number and accuracy of correct matching points, especially for complex scenes in low inlier ratio cases. The algorithm performance is relatively stable, and provides better constraint for gross errors usually caused by repeated textures, scale changes, and moving objects.
出处 《武汉大学学报(信息科学版)》 EI CSCD 北大核心 2014年第10期1208-1213,共6页 Geomatics and Information Science of Wuhan University
基金 国家973计划资助项目(2012CB719904) 国家自然科学基金资助项目(41101452) 高等学校博士学科点专项科研基金资助项目(20122121120003)~~
关键词 车载全景影像 光流 粗差检测 SIFT特征 vehicle-borne panoramic images optical flow gross error detection SIFT feature
  • 相关文献

参考文献14

  • 1Ikeda S, Sato T, Yokoya N. High-resolution Pano- ramic Movie Generation from Video Streams Ac- quired by an Omnidirectional Multi-Camera System [C]. IEEE International Conference on Multisensor Fusion and Integration for Intelligent Systems, To- kyo, Japan, 2003.
  • 2Micusik B, Kosecka J. Piecewise Planar City 3D Modeling from Street View Panoramic Sequences [C]. IEEE Conference on Computer Vision and Pattern Recognition, Miami, USA, 2009.
  • 3Lowe D G. Distinctive Image Features from Scale-invariant Keypoints [J]. International Journal of Computer Vision, 2004, 60(2) : 91-110.
  • 4江万寿,郑顺义,张祖勋,张剑清.航空影像特征匹配研究[J].武汉大学学报(信息科学版),2003,28(5):510-513. 被引量:25
  • 5Nister D. An Efficient Solution to the Five-point Relative Pose Problem [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2004, 26(6) : 756-770.
  • 6Kangni F, Laganiere R. Epipolar Geometry for the Rectification of Cubic Panoramas[C]. The 3rd Canadian Conference on Computer and Robot Vision, Quebec, Canada, 2006.
  • 7Fischler M A, Bolles R C. Random Sample Consen- sus: A Paradigm for Model Fitting with Applica- tions to Image Analysis and Automated Cartography [J]. Communications of the ACM, 1981, 24(6): 381-395.
  • 8Choi S, Kim T, Yu W. Performance Evaluation of Ransac Family[C]. The British Machine Vision Conference, London, UK, 2009.
  • 9Ni K, Jin H, Dellaert F. Group SAC: Efficient Consensus in the Presence of Groupings[C]. IEEE 12th International Conference on Computer Vision, Kyoto, Japan, 2009.
  • 10Richard H, Andrew Z. Multiple View Geometry in Computer Vision[M]. 2nd ed. London: Cambridge University Press, 2003.

二级参考文献8

  • 1Jiang W. TIN Based Global Image Matching for Aerial Images. SPIE,2001.4 552.
  • 2Shen J, Castan S. Fast Filter Transform Theory and Design for Image Processing. IEEE Conference on Computer Vision and Pattern Recognition, San Francisico, 1985.
  • 3Shen J, Castan S. An Optimal Linear Operator for Step Edge Detection. CVGIP, Graphics Model and Image Processing, 1992,54 (2).
  • 4Gr A, Baltsavias E P. Geometrically Constrained Multiphoto Matching. Photogrammetric Data, Interlaken, 1987.
  • 5Rosenholm. Multi-point Matching Using the Least Squares Technique for Evaluation of Three-Dimensional Models. PERS, 1987,8 (6).
  • 6仇彤.基于小波变换的松弛法影像匹配[J].武汉测绘科技大学学报,1998,23(2):145-148. 被引量:4
  • 7张力,沈未名,张祖勋,张剑清.基于约束满足神经网络的整体影像匹配[J].武汉测绘科技大学学报,1999,24(3):216-220. 被引量:3
  • 8张力,沈未名,张祖勋,张剑清.基于空间约束的神经网络影像匹配[J].武汉测绘科技大学学报,2000,25(1):55-59. 被引量:8

共引文献24

同被引文献66

引证文献8

二级引证文献22

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部