期刊文献+

基于人体骨骼和深度图像信息的指尖检测方法 被引量:3

A fingertip detection method based on human skeleton and depth image information
下载PDF
导出
摘要 针对复杂环境下的指尖检测,从手部图像分割和指尖检测方法两方面进行改进,提出了一种基于人体骨骼和深度图像信息的指尖检测方法。首先采用Kinect获取人体骨骼和深度图像信息,通过人体骨骼信息锁定目标用户,利用锁定用户的手部节点位置从深度图像中提取手部区域图像;然后从手部骨架中搜索骨架端点,提出局部最优查找方法对轮廓凸包计算结果进行优化;最后结合手部轮廓特征找到指尖位置。实验结果表明,该方法具有良好的检测效果,满足实时性要求,能够实现复杂环境下的鲁棒检测。 Aiming at fingertip detection in a complex environment, from the two aspects of hand image segmentation and fingertip detection, a fingertip detection method based on human skeleton and depth image information is proposed. Firstly, Kinect is used to obtain the human skeleton and depth im- age information, the objective user is locked by the human skeleton information, and then the hand joint position of the locked user is used to extract the hand area image from the depth image. Secondly, the skeleton endpoints are searched from the hand skeleton, and the local optimal search method is proposed to optimize the results of contour convex hull computation. Finally, the fingertip position is found by combining the feature of hand contour. The experimental results show that the proposed method has good detection effect, meets the real-time requirements and can realize robust detection in a complex en- vironment.
出处 《计算机工程与科学》 CSCD 北大核心 2014年第9期1788-1794,共7页 Computer Engineering & Science
基金 甘肃省自然基金资助项目(1208RJZA191)
关键词 手部分割 指尖检测 人体骨骼 深度图像 复杂背景 hand segmentation fingertip detection human skeleton depth image complex back-ground
  • 相关文献

参考文献8

二级参考文献87

共引文献196

同被引文献28

  • 1毛雁明,章立亮.基于Kinect深度信息的手势分割与识别[J].系统仿真学报,2015,27(4):830-835. 被引量:10
  • 2Carroll J M. Human- computer interaction: psychology as a science of design [J]. Annual Review of Psychology, 1997,48 ( 1 ) :61-83.
  • 3Iwai Y, Watanabe K, Yagi Y, et al. Gesture recognition using colored glove [ C ]//Proceedings of the 13th international conference on pattern recognition. [ s. l. ] : [ s. n. ], 1996 : 662 - 666.
  • 4Weissmann J, Salomon R. Gesture recognition for virtual reality applications using data gloves and neural networks[ C]// Proceedings of international joint conference on neural net-works. [ s. l. ] : IEEE, 1999:2043-2046.
  • 5Viola P,Jones M. Rapid object detection using a boosted cascade of simple features [ C ]//Proceedings of accepted conference on computer vision and pattern recognition. [ s. l. ] : [ s. n.] ,2001:511-518.
  • 6Barrho J, Adam M, Kiencke U. Finger localization and classification in images based on generalized Hough transform and probabilistic models [ C]//Proceedings of 9th international conference on control, automation, robotics and vision. [ s. l.]:[s.n. ] ,2007:1-6.
  • 7Lee D, Lee S G. Vision-based finger action recognition by angle detection and contour analysis[ J]. ETRI Journal,2011,33 (3) :415-422.
  • 8Wikipedia. Kinect[ EB/OL]. 2011-01-13. http://en.wikipedia. org/wiki/Kinect.
  • 9Clark R A ,Pua Yong-Hao ,Karine F ,et al. Validity of the Microsoft Kinect for assessment of postural control [ J ]. Gait & Posture ,2012,36 ( 3 ) : 372-377.
  • 10Dawod A Y,Abdullah J,Alam M J. Adaptive skin color model for hand segmentation[ C]//Proceedings of international conference on computer applications and industrial electronics. [s. l. ]: [s. n. ] ,2010:486-489.

引证文献3

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部