期刊文献+

基于贝叶斯混合集成的概念漂移数据流分类

Bayesian mixture ensemble method to classify concept drift data stream
下载PDF
导出
摘要 为有效解决概念漂移数据流分类问题,提出一种基于混合集成学习的概念漂移数据流分类方法。考虑数据分布特性与概念漂移速率这两个因素,将概念漂移的成因考虑到模型的构建中。采用混合集成学习框架,根据贝叶斯分类错误率来检测概念漂移,通过动态调整滑动窗口,实现不同类型概念漂移的自动识别。实验结果表明,对于不同类型概念漂移数据流的识别问题,该算法在抗噪和漂移检测方面均表现出良好的性能。 To solve the concept drift data stream classification problem effectively ,a new method based on hybrid integrated learning was proposed .This method focuses on the concept of data distribution characteristics and the drift rate ,and takes the causes of concept drift into account .A hybrid integrated learning framework was adopted ,the concept drift was detected based on Bayesian classification error rate ,and different types of concept drift were automatically identified through dynamic adjustment on the sliding window .Experimental results show that the proposed method has the better performance on concept drift data stream identification problem in both the noise and the drift tests .
作者 杨彬彬
出处 《计算机工程与设计》 CSCD 北大核心 2014年第10期3489-3492,3553,共5页 Computer Engineering and Design
基金 国家自然科学基金项目(10771092) 辽宁省教育厅基金项目(L2011186)
关键词 概念漂移 数据流 滑动窗口 贝叶斯分类器 混合集成学习 concept drift stream data sliding window Bayesian classifier hybrid integrated learning
  • 相关文献

参考文献12

  • 1Minku L, White A, Yao X. The impact of diversity on online ensemble learning in the presence of concept drift [J]. IEEE Transactions on Knowledge and Data Engineering, 2010, 22 (5) : 730-742.
  • 2Elwell R, Polikar R. Incremental learning of concept drift in nonstationary environments [J]. IEEE Transactions on Neural Networks, 2011, 22 (10): 1517 1531.
  • 3Lebanon G, Zhao Y. Local likelihood modeling of temporal text streams [C] //Proceedings of the 25th International Con- ference on Machine learning, 2008: 552-559.
  • 4辛轶,郭躬德,陈黎飞,毕亚新.IKnnM-DHecoc:一种解决概念漂移问题的方法[J].计算机研究与发展,2011,48(4):592-601. 被引量:13
  • 5Kolter ], Maloo{ M. Dynamic weighted majority: A new en- semble method for tracking concept drift [J]. Journal of Ma- chine Learning Research, 2007, 8: 2755-2790.
  • 6Gao J, Fan W, Han J. On appropriate assumptions to mine data streams: Analysis and practice [C] //Proc o{ IEEE IC- DM, IEEEComputer Society, 2007: 143-152.
  • 7Zhang P, Zhu X, Shi Y, et al. An aggregate ensemble for mining eoneept drifting data streams with noise [C] //Proe of the 13th Paeific-Asia Conference on Knowledge Discovery, 2009: 1021-1029.
  • 8Bifet A, Holmes G, Pfahringer B, et al. New ensemble me- thods for evolving data streams[C] //Proceedings of the 15th ACM International Conference on Knowledge Discovery and Data Mining. New York, USA: ACM, 2009: 139-148.
  • 9Rangari S R, Dongre S S, Malik L G. A new classifier for handling concept drifting data stream [J]. International Jour- nal of Science and Research, 2013, 2 (5): 441-444.
  • 10Huang S, Dong Y. An active learning system for mining time- changing data streams [J]. Intelligent Data Analysis, 2007, 11 (4): 401-419.

二级参考文献23

  • 1Folino G, Pizzuti C, Spezzano G. An adaptive distributed ensemble approach to mine concept-drifting data streams [C]//Proc of the 19th IEEE Int Conf on Tools with Artificial Intelligence. Piseataway, NJ: IEEE, 2007:183-188.
  • 2Wang Haixun, Fan Wei, Yu P S, et al. Mining concept- drifting data streams using ensemble elassifiers[C] //Proe of the 9th ACM SIGKDD Int Conf on Knowledge Discovery and Data Mining. New York: ACM, 2003:226-235.
  • 3Tsymbal A. The problem of concept drift: Definitions and related work, TCD-CS-2004-15 [R]. Dublin, Ireland.. Department of Computer Science, Trinity College, 2004.
  • 4Hulten G, Spencer L, Domingos P. Mining time-changing data streams[C]//Proc of the 7th ACM SIGKDD Int Conf on Knowledge Discovery and Data Mining. New York: ACM, 2001:97-106.
  • 5Babcock B, Babu S, Datar M, et al. Models and issues in data stream systems[C] //Proc of the 21st ACM SIGACT- SIGMOD-SIGART Syrup on Principles of Database Systems. New York: ACM, 2002:1-16.
  • 6Widmer G, Kubat M. Learning in the presence of concept drift and hidden contexts[J]. Machine Learning, 1996, 23 (1) : 69-101.
  • 7Domingos P, Hulten G. Mining high-speed data streams[C] //Proc of the 6th ACM SIGKDD Int Conf on Knowledge Discovery and Data Mining. New York: ACM, 2000:71-80.
  • 8Gama J, Rocha R, Medas P. Accurate decision trees for mining high-speed data streams[C] //Proc of the 9th ACM SIGKDD Int Conf on Knowledge Discovery and Data Mining. New York: ACM, 2003:523-528.
  • 9Gama J, Medas P, Rocha R. Forest trees for on-line data[C] //Proc of the 19th ACM Symp on Applied Computing. New York: ACM, 2004:632-636.
  • 10Gama J, Castillo G. Learning with local drift detection[G]// LNAI 4093: Proe of the 2nd Inf Conf on Advanced Data Mining and Applieations. Berlin: Springer, 2006:42-55.

共引文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部