期刊文献+

增强现实中基于自然特征的实时跟踪方法 被引量:5

Natural feature-based real time tracking method for augmented reality
下载PDF
导出
摘要 在增强现实系统的复杂场景中,对目标的实时跟踪受到场景中诸多因素的制约,导致实时跟踪方法效率低且不准确,为此提出一种基于自然特征的实时跟踪方法。设计了一种螺旋分割模型,对捕获的图像进行螺旋分割,利用SURF算法在分割子块中提取特征点,并进行匹配。在对目标进行跟踪定位时,利用前一帧来预测当前帧目标出现的位置,以减少SURF算法的扫描区域,加速系统运算效率。实验中分别对场景光线强弱、视点和仿射变化以及目标被部分遮挡等不同情况进行测试,该方法均表现出较高的跟踪效率。 In complex scenes of augmented reality systems ,the real-time tracking of a target is made difficult by many factors within the scene and as a result many current real time tracking methods are low in efficiency and accuracy .To solve the prob-lem ,a natural feature-based tracking method was proposed that utilized a spiral model for segmenting captured images .Once an image was segmented ,feature points in the segmented blocks were extracted using the SURF algorithm and then matched with those in the template image set .Whilst tracking the target ,the position in the current frame was predicted according to the posi-tion in the previous frame in order to reduce search areas and improve the algorithm efficiency .Under situations of varying light intensity and viewpoints ,affine transformation and partially occluding targets ,experimental results show this method has high tracking efficiency .
出处 《计算机工程与设计》 CSCD 北大核心 2014年第10期3549-3553,共5页 Computer Engineering and Design
基金 国家自然科学基金项目(61100091) 辽宁省自然科学基金项目(201102164)
关键词 增强现实 跟踪 自然特征 图像分割 遮挡 augmented reality tracking natural features image segmentation occlusion
  • 相关文献

参考文献13

  • 1Radkowski R, Oliver J. A hybrid *racking solution to enhance natural interaction in marker-based augmented reality applica- tions [C] //The Sixth International Conference on Advances in Computer-Human Interactions, 2013:444 -453.
  • 2Hagbi N, Bergig O, Igl Sana J, el ai. Shape recognition and pose estimation for mobile augmented reality [J]. IEEE Tran sactions on Visualization and Computer Graphics, 2011, 17 (10): 1369 -1379.
  • 3赵林,冯燕,吕维.抗遮挡视频图像目标实时跟踪的仿真研究[J].计算机仿真,2011,28(5):258-262. 被引量:1
  • 4Ufkes A, Fiala M. A markerless augmented reality system for mobile devices [C] //International Conference on Computer and Robot Vision. IEEE, 2013: 226-233.
  • 5Wagner D, Reitmayr G, Mulloni A, et al. Real-time detec- tion and tracking for augmented reality on mobile phones [J]. IEEE Transactions on Visualization and Computer Graphics, 2010, 16 (3): 355-368.
  • 6Gong R H, Gtiler O, Lovejoy J, et al. An augmented reality approach for initializing 2D/3D registration [M]. Berlin: Aug- mented Reality Environments for Medical Imaging and Compu- ter-Assisted Interventions, 2013: 117-126.
  • 7Teixeira L, Raposo A B, Gattass M. Indoor localization using SLAM in parallel with a natural marker detector [C] //Pro- ceedings of the 28th Annual ACM Symposium on Applied Com- puting. ACM, 2013: 27-33.
  • 8Bay H, Tuytelaars T, Van Gool L. Surf: Speeding up robust features [M]. Berlin: Computer Vision-ECCV, 2006:404-417.
  • 9闫利,陈林.一种改进的SURF及其在遥感影像匹配中的应用[J].武汉大学学报(信息科学版),2013,38(7):770-773. 被引量:19
  • 10SIMON G. Tracking-by-synthesis using point features and py- ramidal blurring [C] //10th IEEE International Symposium on Mixed and Augmented Reality, 2011: 85-92.

二级参考文献31

  • 1董立菊,于戈.一种有效的图像二值化方法[J].东北大学学报(自然科学版),2004,25(12):1149-1152. 被引量:17
  • 2侯志强,韩崇昭.视觉跟踪技术综述[J].自动化学报,2006,32(4):603-617. 被引量:255
  • 3杨听,汤国安,邓风东,等.ERDAS遥感数字图像处理实验教程[M].北京:科学出版社,2009.
  • 4H T Nguyen, A W M Smeulders. Fast Occluded object tracking by a robust appearance filter[ J], IEEE Transactions on Pattern Anal- ysis and Machine Intelligence, 2004,26(8) :1099-1104.
  • 5A Adsm, E Rivlin, I Shimshoni. Robust Fragments-based Track- ing using the Integral Histogram [ C ]. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2006. 798-805.
  • 6D Cremers, T Kohlberger, C Schnorr. Non-llnear shape statistics in mumford- shah based segmentation [ C ]. Europeon Conference on Computer Vision, 2002.93-108.
  • 7B K P Horn, B G Schunck. Determining Optical Flow[J]. Artifi- cial Intelligence, 1981,17 : 185-203.
  • 8T Brox, A Bruhn, N Papenberg, J Weiekert. High accuracy opti- cal flow estimation based on a theory for warping[ C]. Europeon Conference on Computer Vision, 2004. 25-36.
  • 9Zollner F, Matusevich V, Kowarschik R. 3D Measurement by Stereophotogrammetry[J]. Proceedings of SPIE, 2003, 5144: 311-314.
  • 10Salvi J. Pattern Codification Strategies in Structured Light Systems[J]. Pattern Recognition, 2004, 37(4): 827-849.

共引文献33

同被引文献44

  • 1王涌天,郑伟,刘越,常军,黄天智,王立峰,苗春.基于增强现实技术的圆明园现场数字重建[J].科技导报,2006,24(3):36-40. 被引量:32
  • 2Azuma R.Survey of Augmented Reality[J].Teleo-perators and Virtual Environments,1997,6(4):355-385.
  • 3Comport A I,Marchand E,Pressigout M,et al.Real-time Markerless Tracking for Augmented Reality:The Virtual Visual Servoing Framework[J].IEEE Transactions on Visualization and Computer Graphics,2006,12(4):615-628.
  • 4Wagner D,Reitmayr G,Mulloni A,et al.A.Real-time Detection and Tracking for Augmented Reality on Mobile Phones[J].IEEE Transactions on Visualization and Computer Graphics,2010,16(3):355-368.
  • 5Davison A,Reid I,Molton N D,et al.Mono-SLAM:Realtime Single Camera SLAM[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2007,29(6):1052-1067.
  • 6Civera J,Davison A J,Montiel J M M.In Verse Depth Parameterization for Monocular SLAM[J].IEEE Transactions on Robotics,2008,24(5):932-945.
  • 7Gordon N,Salmond D.Novel Approach to Nonlinear/Non-Gaussian Bayesian State Estimation[J].Radar and Signal Processing,1993,140(2):107-113.
  • 8Julier S,Uhlmann J.A New Extension of the Kalman Filter to Nonlinear Systems[C]//Proceedings of the 11th International Symposium on Aerospace/Defence Sensing,Simulation and Controls.Berlin,Germany:Springer,1997:182-193.
  • 9Bar-Shalom Y,Li X,Kirubarajan T.Estimation with Applications to Tracking and Navigation[M].New York,USA:John Wiley and Sons,Inc.,2001.
  • 10全红艳,王长波,林俊隽.基于视觉的增强现实技术研究综述[J].机器人,2008,30(4):379-384. 被引量:21

引证文献5

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部