期刊文献+

加权在线贯序极限学习机算法及其应用

Weighted online sequential extreme learning machine and its application
下载PDF
导出
摘要 针对在线贯序极限学习机对所有数据等权处理这一缺陷,提出加权在线贯序极限学习机算法。依据运算过程中产生的网络均方根误差的差异,给新数据以及历史数据分配不同的权值,当网络均方根误差较大时减小其权值,较小时增大其权值。该算法实现了对新旧数据的不等权处理,利用航空发动机传感器数据验证该算法的可行性。验证结果表明,基于该算法所建的航空发动机传感器故障诊断模型要比基于传统在线贯序极限学习机算法所建模型的精度更高。 To solve the defect that the online sequential extreme learning machine uses equal rights to deal with all the data ,the weighted online sequential extreme learning machine (WOS-ELM ) algorithm was proposed .According to the different network root mean square errors emerging during the operation process ,different weights were assigned to the historical and new data . When the network root mean square error was big ,its weight was reduced ,and vise versa .This algorithm can implement the range of the historical and new data processing ,and the feasibility of the algorithm is validated by the simulation test on sensor data sampled from an aircraft engine .Results of the simulation test show that the precision of the sensor fault diagnosis based on the weighted online sequential extreme learning machine algorithm is higher than that based on the online sequential extreme learning machine algorithm for the aircraft engine .
出处 《计算机工程与设计》 CSCD 北大核心 2014年第10期3594-3597,3666,共5页 Computer Engineering and Design
基金 国家自然科学基金委员会和中国民用航空局联合研究基金重点项目(U1233201) 天津市科技支撑计划重点基金项目(11ZCKFGX04000) 中央高校基本科研基金项目(ZXH2012B002 3122013P005)
关键词 在线贯序极限学习机 航空发动机 传感器 故障诊断 加权 online sequential extreme learning machine aircraft engine sensor fault diagnosis weighted
  • 相关文献

参考文献11

  • 1李睿,郭迎清,吴文斐.航空发动机传感器故障诊断设计与验证综合仿真平台[J].计算机测量与控制,2010,18(3):527-529. 被引量:22
  • 2Huang Guangbin, Zhou Hongming, Ding Xiaojian. Extreme learning machine for regression and multiclass classification [J]. IEEE Transactions on Systems, Man, and Cybernetics, 2012, 42 (2): 513-529.
  • 3Rong Hai}un, Huang Guangbin, Sundarara-:an N. Online se- quential fuzzy extreme learning machine for function approxima- tion and classification problems [J] IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics-Special Issue on Cybernetics and Cognitive Informatics, 2009, 39 (4) : 1067-1072.
  • 4张弦,王宏力.具有选择与遗忘机制的极端学习机在时间序列预测中的应用[J].物理学报,2011,60(8):68-74. 被引量:17
  • 5Yuan Lan, Yeng Chai Soh, Huang Guangbin. A constructive enhancement for online sequential extreme learning machine [C] //International Joint Conference on Neural Networks, 2009: 1708-1713.
  • 6杨乐,张瑞.在线序列ELM算法及其发展[J].西北大学学报(自然科学版),2012,42(6):885-889. 被引量:11
  • 7柯海森,黄晓兰.一种改进极限学习机方法的研究[c]//32nd Chinese Control Conference,2013:3232-3237.
  • 8Cao Jiuwen, Lin Zhiping, Huang Guangbin. Voting base on-line sequential extreme learning machine for multi-class classify- cation [C] //IEEE International Symposium on Circuits and System, 2013: 2327-2330.
  • 9Muhammad Khusalri Osman, Mohd Yusoff Mashor, Hasnan Jaafar. Online sequential extreme learning machine for classifi- cation of mycobacterium tuberculosis in ziehl-neelsen stained tis- sue [C] //International Conference on Biomedical Engineering, 2012 : 139-143.
  • 10Yu Jun, Meng Joo Er. An enhanced online sequential extreme learning machine algorithm[C] //Chinese Control and Deci- sion Conference, 2008: 2902-2907.

二级参考文献38

  • 1薛薇,郭迎清.航空发动机控制系统多传感器软故障检测研究[J].计算机测量与控制,2007,15(5):585-586. 被引量:15
  • 2G. Torella, G. Palmesano. The Development of a Virtual Test Bed for Gas Turbine Engines [A]. 39th AIAA/ASME/SAE/ASEE Joint Propulsion Conference Huntsville [C]. Alabama 20 - 23 July 2003.
  • 3Dobrokhodov V. Developing Serial Communication Interfaces for Rapid Prototyping of Navigation and Control Tasks[R]. AIAA, 2005 - 6099.
  • 4K. Khorasani, P. Eng. Nonlinear Fault Detection, Isoation and Recovery Techniques for Unmanned Systems [R]. DRDC--VAL- CARTIER-- CR-- 2007-- 295.
  • 5Kobayashi T, Simon D L. Evaluation of an enhanced bank of Kalman filters for In- flight aircraft engine sensor fault diagnostics[R]. NASA/TM-- 2004--213203.
  • 6Song Q S, Feng Z R 2010 Expert Syst. Appl. 37 1776.
  • 7Fu Y Y, Wu C J, Jeng J T, Ko C N 2010 ExpertSyst. Appl. 37 4441.
  • 8]eng J T, Chuang C C, Tao C W 2010 Net~rocomputing 73 1686.
  • 9Muhammad A F, Zolfaghari S 2010 Neurocomputing 73 2540.
  • 10Song Q S, Feng Z R 2010 Neurocomputing 73 2177.

共引文献47

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部