期刊文献+

面向应用服务的虚拟机性能评估 被引量:3

VMs performance analysis based on application service
下载PDF
导出
摘要 为了获取在云平台下提供应用服务的虚拟机所表征出的特定负载特性(这种负载特性可以用来标识此应用服务的行为),设计对现有虚拟机负载信息进行采集,达到了对虚拟机状态信息和负载信息有效获取;通过获取到的虚拟机系统信息,提出基于指定类型优化的性能评估算法,得出虚拟机的基本特征,对虚拟机性能负载进行量化。为虚拟机资源和物理机资源的充分使用提供解决思路。 In cloud ,lots of VMs are running to provide the application service .To get the VMs’ specific load characteristics , which can be used to identify the behaviors of the application service ,a collection method was designed to collect the VMs’ load information and make it more effective to achieve the VMs’ state information .A design of performance evaluation algorithm was presented based on the specific application service type .First ,the VMs’ system information was collected to calculate the VMs’ basic characters ,then the VMs’ performance load was quantified .The method gives a new solution on how to use resources of VMs and PMs adequately .
出处 《计算机工程与设计》 CSCD 北大核心 2014年第10期3631-3638,共8页 Computer Engineering and Design
基金 国家云计算示范工程基金项目(C73623989020220110006)
关键词 云计算 虚拟化 虚拟机监控 性能特征 基础设施即服务 cloud computing virtualization virtual machine monitoring performance characteristics IaaS
  • 相关文献

参考文献10

  • 1Chaves D De SA, Uriarte RB, Westphall CB. Toward an ar- chitecture for monitoring private clouds [J]. IEEE Communi- cations Magazine December, 2011, 49 (12): 130-137.
  • 2Google App Engine. Google Inc [J/OL]. http://code. google, com/appengine/, 2013.
  • 3K6nig B, Alcaraz Calero, Kirschnick JM, et al. Elastic moni- toring framework for cloud infrastructures [J]. IEEE Commu- nicationslET, 2012, 6 (10): 1306-1315.
  • 4Katsaros G, Kousiouris G, Gogouvitis S, et al. A service oriented monitoring framework for soft real-time applications[C] //Service Oriented Computing and Applciaitons, 2010.
  • 5Napoleon D, Pavalakodi 5;. A new method for dimensionality reduction using k-means clustering algorithm for high dimen- sional data set [J]. International Journal of Computer Applica- tions (0975-8887), 2011, 13 (7): 41-46.
  • 6Selim S Z, Ismail M A. K-means-type algorithms: A genera- lized convergence theorem and characterization of local optimality [J]. Pattern Analysis and Machine Inteligence, 2009 (1): 81-87.
  • 7Prabhu P, Anbazhagan N. Improving the performance of k- means clustering for high dimensional data set [J]. Interna- tional Journal on Computer Science and Engineering, 2011, 3 (6) : 2321-2322.
  • 8Das S, Abraham A, Konar A. Automatic clustering using an improved differential evolution algorithm [J] IEEE Trans Syst, Man Cyhern, A, Syst Humans, 2008, 38 (1): 218-237.
  • 9Matthews J N, Hu W, Hapuarachchi M, et al. Quantifying the performance isolation properties of virtualization systems[C] //Proceedings of the Workshop on Experimental Computer Science. New York, NY, USA: ACM, 2007.
  • 10Mousa H, Doshi K, Ould-Ahmed-Vall E. Characterizing performance invirtualized execution [C] //2nd Workshop on Statistical and Machine Learning Approaches to Architectures and Compilation, 2008.

同被引文献18

引证文献3

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部