期刊文献+

复杂网络的有限时间同步控制 被引量:1

Finite-Time Synchronization Control of Complex Networks
下载PDF
导出
摘要 针对线性耦合的复杂网络有限时间同步控制问题,在非线性动态满足一定条件的情况下,基于同步误差,结合线性反馈原理和有限时间控制思想,提出两种不同的连续非光滑控制协议。并应用矩阵理论和有限时间稳定性引理,给出复杂网络实现有限时间同步的充分条件。若选取合适的反馈控制增益,可使复杂非线性耦合网络实现有限时间同步。最后通过仿真实例验证了该方案的可行性和有效性。 The finite-time synchronization control problem is addressed for complex dynamical networks with linear couplings. In the case that nonlinear dynamics satisfies certain conditions, based on the synchronization error, two different continuous non-smooth control protocols are proposed, combined with linear feedback principle and finite-time control. The sufficient conditions are given for finite-time synchronization of complex networks by applying matrix theory and finite-time stability lemma. And finite time synchronization can be achieved with suitable control gain for complex dynamic network with nonlinear couplings. Simulation results verified the correctness and validity of the proposed scheme.
出处 《吉林大学学报(信息科学版)》 CAS 2014年第4期423-429,共7页 Journal of Jilin University(Information Science Edition)
基金 黑龙江省科学基金资助项目(QC2013C066)
关键词 复杂网络 有限时间 同步控制 complex networks finite-time synchronization control
  • 相关文献

参考文献21

二级参考文献133

共引文献26

同被引文献24

  • 1吴云华,曹喜滨,曾占魁,郑鹏飞.编队飞行卫星相对姿态变结构分布式协同控制[J].吉林大学学报(工学版),2007,37(6):1465-1470. 被引量:6
  • 2YU Di, BA1 Xuefeng, REN Weijian, et al. Finite Time Synchronization of Complex Network [ J]. Journal of Jilin University: Information Science Edition, 2014, 32(4) : 423-429.
  • 3WANG X, HONG Y G. Finite-Time Consensus for Multi-Agent Networks with Second Order Agent Dynamics [ C ] // Proceedings of 17th World Congress of the Int Federation of Automatic Control. Seoul: IEEE, 2008: 15185-15190.
  • 4ZHANG Niaona, ZHOU Sui, ZHANG Dejiang. Finite Time Synchronization of Chaotic Systems with Different Structure Based on Active Control [ J ]. Journal of Jilin University: Engineering and Technology Edition, 2011,41 (4) : 1131-1134.
  • 5WU Yunhua, CAO Xibin, ZENG Zhankui, et al. Relative Attitude Decentralized Variable Structure Coordinated Control of Formation Flying Satellites [ J]. Journal of Jilin University: Engineering and Technology Edition, 2007, 37 (6) : 1465-1470.
  • 6MEI Rong. Synchronization Control Method of Sliding Mode Adaptive Time-Delay Triangular Chaotic System [ J ]. Joumal of Jilin University: Information Science Edition, 2013, 31 (1) : 18-24.
  • 7FILIPOV A F. Differential Aligns with Discontinuous Right-Hand Side [ J ]. American Mathematical Society Trans, 1964, 42(2) : 191-231.
  • 8PADEN B E, SASTRY S S. A Calculus for Computing Filippov's Differential Inclusion with Application to the Variable Structure Control of Robot Manipulators [ J]. IEEE Trans on Circuits and Systems, 1987, 34( 1 ) : 73-82.
  • 9MOULAY E, PERRUQUETFI W. Finite Time Stability of Differential Inclusions [ J ~. IMA J of Mathematical Control and Information, 2005, 22(4) : 465-475.
  • 10CORTES J. Finite-Time Convergent Gradient Flows with Applications to Network Consensus [ J]. Automatica, 2006, 42( 11 ) : 1993-2000.

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部