期刊文献+

基于概率密度分割的特征约束角点匹配方法 被引量:2

Characteristics Constrained Corner Matching Method Based on Probability Density Segmentation
下载PDF
导出
摘要 为克服Harris算子特征点匹配的角点群聚现象,提出了一种基于概率密度的角点匹配算法。该方法将角点间的图像距离作为基本区域划分的主要参考系数,利用划分区域的角点概率密度减少匹配区域,然后将区域外的特征点判定为伪角点并将其去除。实验表明,该改进算法的匹配结果有效地减少了干扰点,从而提高了算法的实时性和准确性。 To overcome comer clustering phenomenon of Harris operator feature point matching, we proposed a probability density-based comer matching algorithm. This method sets the image distance between the comer as a basic reference coefficient of the main regional division, using the comer probability density of regional division to reduce the matching area, and judging the feature points outside the region as false comers and removing them. Experiments show that the matching results of improved algorithm effectively reduce interference points, improving the timeliness and accuracy of the algorithm.
出处 《吉林大学学报(信息科学版)》 CAS 2014年第4期435-440,共6页 Journal of Jilin University(Information Science Edition)
关键词 角点检测 HARRIS算子 概率密度 均匀化 区域划分 目标定位 comer detection Harris operator probability density uniform regional segmentation target location
  • 相关文献

参考文献9

  • 1戴涛,朱长仁,胡树平.图像匹配技术综述[J].数字技术与应用,2012,30(3):174-175. 被引量:30
  • 2朱俊,任明武,杨章静,赵炜.基于角点检测的快速匹配算法[J].南京理工大学学报,2011,35(6):755-758. 被引量:9
  • 3王宏力,贾万波.图像匹配算法研究综述[C] //全国第19届计算机技术与应用(CACIS)学术会议论文集(上册).合肥:中国科学技术大学出版社,2008:418-422.
  • 4邹华荣.图像匹配中的性能优化[J].电脑知识与技术(过刊),2009,15(10X):8260-8264. 被引量:1
  • 5NIKHIL NAIKAL ALLEN,YANG Y,SHANKAR S.Informative Feature Selection for Object Recognition via Sparse PCA[C //Computer Vision (ICCV),2011 IEEE International Conference on.Barcelona:[s.n.] ,2011:818-825.
  • 6毛雁明,兰美辉,王运琼,冯乔生.一种改进的基于Harris的角点检测方法[J].计算机技术与发展,2009,19(5):130-133. 被引量:42
  • 7HANG Xin,JI Xiuhua.An Improved Harris Comer Detection Algorithm for Noised Images[J] .Advanced Materials Research,2012,1566(433):6151-6156.
  • 8WU Yanhai,LI Jiaxin,ZHANG Fangni,et al.The Improved Corner Detection for Video Text Positioning Algorithm[C] //Information Technology Applications in Industry.Switzerland:Trans Tech Publications,2013:1523-1526.
  • 9周龙萍.基于改进的Harris算法检测角点[J].计算机技术与发展,2013,23(2):11-14. 被引量:18

二级参考文献49

  • 1闫龙,赵正旭,周以齐.图像质量对Harris角点检测的影响研究[J].山东大学学报(工学版),2006,36(5):21-24. 被引量:14
  • 2王玉珠,杨丹,张小洪.基于B样条的改进型Harris角点检测算法[J].计算机应用研究,2007,24(2):192-193. 被引量:22
  • 3李伟,沈振康,李飚.基于局部曲率函数的角点检测[J].计算机工程与设计,2007,28(11):2595-2596. 被引量:6
  • 4Smith A M, Brady J M. SUSAN: A New Approach to Low Level Image Processing[J ]. International Journal of Computer Vision, 1997,23 ( 1 ) : 45 - 78.
  • 5Zun Ga O A, Haralick R M. Corner Detection Using the Facet Model[ C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Piscataway, USA: IEEE, 1983:30 - 37.
  • 6S Hen H T, Hu W C. A Rotationally Invariant Two-phase Scheme for Comer Deteetion[J ]. Pattem Recognition, 1996, 29(5) :819- 828.
  • 7Wu Z Q, Rosenfeld A. A Filtered Projections as an Aid in Comer Detection[J]. Pattern Recognition, 1983, 16( 1 ) : 31 - 38.
  • 8Hua J P, Liao Q M. Multiscale comer detection by using wavelet transform[J]. IEEE Transactions on Image Processing, 1995,4 ( 1 ):100 - 104.
  • 9Freeman H, Davis L S. A comer - finding algorithm for chain - coded curves[J ]. IEEE Trans. on Computer, 1977,26(3) : 297 - 303.
  • 10Mokhtarian F, Suomda R. Robust mage Comer Detection Through CurvatureScale space[J]. IEEE Trans. Pattern Analysis and Machine Intelligence, 1998,20(12) :2549 - 2552.

共引文献96

同被引文献25

  • 1胡顺波,王广泰.基于多子窗口快速归一化互相关的肿瘤识别[J].光电子.激光,2009,20(3):422-424. 被引量:2
  • 2李强,裘正定,孙冬梅,张延强.指横纹:一种新的生物身份特征[J].自动化学报,2007,33(6):596-601. 被引量:21
  • 3Zhu Y N,Hall T J,Jiang J F. A finite-element approach forYoung’s modulus reconstruction [ J ]. IEEE Transactions onMedical Imaging,2003,22(7) :890 -901.
  • 4Zheng Y F,Doermann D. Robust point matching for nonrigidshapes by preserving local neighborhood structures [ J ]. IEEETransactions on Pattern Analysis and Machine Intelligence,2006,28(4) :643 -649.
  • 5CHEN Q, LI J, LU G, et al. Clothing Retrieval Based on Image Bundled Features [ C ]////Cloud Computing and IntelligentSystems (CCIS), 2012 IEEE 2nd International Conference on. Hangzhou: IEEE, 2012, 2: 980-984.
  • 6YAMAGUCHI K, KIAPOUR M H, ORTIZ L E, et al. Parsing Clothing in Fashion Photographs [ C ] // IEEE Conference on Computer Vision and Pattern Recognition. Providence, RI : [ s. n. ], 2012 : 3570-3577.
  • 7DATI'A R, JOSHI D, LI J, et al. Image Retrieval: Ideas, Influences, and Trends of the New Age [ J ]. ACM Computing Surveys, 2008, 40 (2) : 5-8.
  • 8LOWED G. Distinctive Image Features from Scale-Invariant Keypoints [ J]. International Journal of Computer Vision, 2004, 60(2) : 91-110.
  • 9SIVIC J, ZISSERMAN A. Video Google: A Text Retrieval Approach to Object Matching in Videos [ C ]//Proceedings of 9th IEEE International Conference on Computer Vision. Nice, France : [ s. n. ], 2003 : 1470-1477.
  • 10ZHENG L, WANG S, LIU Z, et al. Packing and Padding : Coupled Multi-Index for Accurate Image Retrieval [ C ]//IEEE Conference on Computer Vision and Pattern Recognition. Colubums, OH: [ s. n. ], 2014: 1947-1954.

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部